File size: 2,349 Bytes
bf22513
 
 
 
 
 
 
 
 
 
 
 
 
4fdb82b
 
 
 
 
 
 
 
1c45cd7
bf22513
 
 
 
 
4fdb82b
bf22513
 
4fdb82b
 
1c45cd7
4fdb82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
base_model: unsloth/DeepSeek-R1-Distill-Qwen-14B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---

# Disclaimer!!
Hello! This model is not perfect yet, I am just experimenting! 
This is me attempting the [AIMO Prize 2 Kaggle contest](https://www.kaggle.com/competitions/ai-mathematical-olympiad-progress-prize-2)

I have decided to release the models before the competition ends because I don't care about winning the contest as much!

My research fields are Medical Computing and Reinforcement Learning. Feel free to add me on [LinkedIn](https://www.linkedin.com/in/sindhusatish/) if you want to chat!



- **Developed by:** sindhusatish97
- **License:** apache-2.0
- **Finetuned from model :** unsloth/DeepSeek-R1-Distill-Qwen-14B

This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. - Huge thanks to the awesome team for releasing these distilled models!

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)


# Test it out!
```python

!pip install unsloth
# Also get the latest nightly Unsloth!
!pip install --force-reinstall --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git
from unsloth import FastLanguageModel
import torch
max_seq_length = 5120 # I chose this value based on Qwen's max sequence length.  
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "sindhusatish97/DeepSeek-R1-Distill-Qwen-14B-unsloth-bnb-4bit-AIMO_CoT",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
        """4 pints of a 5% antifreeze solution and 8 pints of a 20% antifreeze solution must be mixed to obtain 12 pints of a 
        solution with what percentage of antifreeze?"""
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_length = 2048)
```