--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: breeze-dsw-tiny-ml results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: ml split: test args: ml metrics: - name: Wer type: wer value: 55.097312326227986 --- # breeze-dsw-tiny-ml This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7383 - Wer: 55.0973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.1736 | 2.02 | 100 | 1.1670 | 99.7776 | | 0.9647 | 4.04 | 200 | 1.0049 | 95.4866 | | 0.5311 | 7.02 | 300 | 0.6807 | 74.5598 | | 0.3036 | 9.04 | 400 | 0.5410 | 61.5755 | | 0.1672 | 12.02 | 500 | 0.5146 | 56.5709 | | 0.1006 | 14.04 | 600 | 0.5503 | 54.3744 | | 0.0484 | 17.02 | 700 | 0.5859 | 54.5042 | | 0.0305 | 19.04 | 800 | 0.6562 | 55.4124 | | 0.0147 | 22.02 | 900 | 0.7095 | 54.8749 | | 0.0116 | 24.04 | 1000 | 0.7383 | 55.0973 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0