simonycl commited on
Commit
096a9fe
1 Parent(s): 6f3edc2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -155
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- license: mit
3
- base_model: roberta-base
4
  tags:
5
  - generated_from_trainer
6
  metrics:
@@ -15,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # best_model-yelp_polarity-64-13
17
 
18
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.5667
21
- - Accuracy: 0.9531
22
 
23
  ## Model description
24
 
@@ -50,156 +50,156 @@ The following hyperparameters were used during training:
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
- | No log | 1.0 | 4 | 0.4950 | 0.9453 |
54
- | No log | 2.0 | 8 | 0.5018 | 0.9453 |
55
- | 0.0313 | 3.0 | 12 | 0.5172 | 0.9375 |
56
- | 0.0313 | 4.0 | 16 | 0.5337 | 0.9375 |
57
- | 0.0022 | 5.0 | 20 | 0.5305 | 0.9375 |
58
- | 0.0022 | 6.0 | 24 | 0.5262 | 0.9453 |
59
- | 0.0022 | 7.0 | 28 | 0.5880 | 0.9375 |
60
- | 0.0 | 8.0 | 32 | 0.6565 | 0.9297 |
61
- | 0.0 | 9.0 | 36 | 0.6975 | 0.9297 |
62
- | 0.0 | 10.0 | 40 | 0.7200 | 0.9297 |
63
- | 0.0 | 11.0 | 44 | 0.7279 | 0.9297 |
64
- | 0.0 | 12.0 | 48 | 0.7313 | 0.9297 |
65
- | 0.0 | 13.0 | 52 | 0.7341 | 0.9297 |
66
- | 0.0 | 14.0 | 56 | 0.7336 | 0.9297 |
67
- | 0.0 | 15.0 | 60 | 0.7327 | 0.9297 |
68
- | 0.0 | 16.0 | 64 | 0.7322 | 0.9297 |
69
- | 0.0 | 17.0 | 68 | 0.7316 | 0.9297 |
70
- | 0.0003 | 18.0 | 72 | 0.6308 | 0.9375 |
71
- | 0.0003 | 19.0 | 76 | 0.6078 | 0.9297 |
72
- | 0.0001 | 20.0 | 80 | 0.6654 | 0.9297 |
73
- | 0.0001 | 21.0 | 84 | 0.6901 | 0.9375 |
74
- | 0.0001 | 22.0 | 88 | 0.7017 | 0.9375 |
75
- | 0.0 | 23.0 | 92 | 0.7081 | 0.9375 |
76
- | 0.0 | 24.0 | 96 | 0.7123 | 0.9375 |
77
- | 0.0 | 25.0 | 100 | 0.7145 | 0.9375 |
78
- | 0.0 | 26.0 | 104 | 0.6975 | 0.9375 |
79
- | 0.0 | 27.0 | 108 | 0.5526 | 0.9453 |
80
- | 0.0 | 28.0 | 112 | 0.5090 | 0.9375 |
81
- | 0.0 | 29.0 | 116 | 0.5060 | 0.9453 |
82
- | 0.0 | 30.0 | 120 | 0.4909 | 0.9453 |
83
- | 0.0 | 31.0 | 124 | 0.4795 | 0.9531 |
84
- | 0.0 | 32.0 | 128 | 0.5341 | 0.9453 |
85
- | 0.0001 | 33.0 | 132 | 0.7060 | 0.9375 |
86
- | 0.0001 | 34.0 | 136 | 0.7890 | 0.9219 |
87
- | 0.0325 | 35.0 | 140 | 0.5327 | 0.9531 |
88
- | 0.0325 | 36.0 | 144 | 0.4583 | 0.9453 |
89
- | 0.0325 | 37.0 | 148 | 0.4502 | 0.9453 |
90
- | 0.0 | 38.0 | 152 | 0.4513 | 0.9531 |
91
- | 0.0 | 39.0 | 156 | 0.4438 | 0.9531 |
92
- | 0.0 | 40.0 | 160 | 0.4360 | 0.9453 |
93
- | 0.0 | 41.0 | 164 | 0.4290 | 0.9453 |
94
- | 0.0 | 42.0 | 168 | 0.4285 | 0.9531 |
95
- | 0.0 | 43.0 | 172 | 0.4338 | 0.9531 |
96
- | 0.0 | 44.0 | 176 | 0.4391 | 0.9531 |
97
- | 0.0 | 45.0 | 180 | 0.4437 | 0.9531 |
98
- | 0.0 | 46.0 | 184 | 0.4478 | 0.9453 |
99
- | 0.0 | 47.0 | 188 | 0.4518 | 0.9453 |
100
- | 0.0 | 48.0 | 192 | 0.4554 | 0.9453 |
101
- | 0.0 | 49.0 | 196 | 0.4583 | 0.9453 |
102
- | 0.0 | 50.0 | 200 | 0.4618 | 0.9453 |
103
- | 0.0 | 51.0 | 204 | 0.4649 | 0.9453 |
104
- | 0.0 | 52.0 | 208 | 0.4675 | 0.9453 |
105
- | 0.0 | 53.0 | 212 | 0.4697 | 0.9453 |
106
- | 0.0 | 54.0 | 216 | 0.4717 | 0.9453 |
107
- | 0.0 | 55.0 | 220 | 0.4737 | 0.9453 |
108
- | 0.0 | 56.0 | 224 | 0.4753 | 0.9453 |
109
- | 0.0 | 57.0 | 228 | 0.4773 | 0.9453 |
110
- | 0.0 | 58.0 | 232 | 0.4793 | 0.9453 |
111
- | 0.0 | 59.0 | 236 | 0.4811 | 0.9453 |
112
- | 0.0 | 60.0 | 240 | 0.4826 | 0.9453 |
113
- | 0.0 | 61.0 | 244 | 0.4839 | 0.9453 |
114
- | 0.0 | 62.0 | 248 | 0.4852 | 0.9453 |
115
- | 0.0 | 63.0 | 252 | 0.4865 | 0.9453 |
116
- | 0.0 | 64.0 | 256 | 0.4877 | 0.9453 |
117
- | 0.0 | 65.0 | 260 | 0.4889 | 0.9453 |
118
- | 0.0 | 66.0 | 264 | 0.4901 | 0.9453 |
119
- | 0.0 | 67.0 | 268 | 0.4913 | 0.9453 |
120
- | 0.0 | 68.0 | 272 | 0.4924 | 0.9453 |
121
- | 0.0 | 69.0 | 276 | 0.4940 | 0.9453 |
122
- | 0.0 | 70.0 | 280 | 0.4953 | 0.9453 |
123
- | 0.0 | 71.0 | 284 | 0.4966 | 0.9453 |
124
- | 0.0 | 72.0 | 288 | 0.4979 | 0.9453 |
125
- | 0.0 | 73.0 | 292 | 0.4993 | 0.9453 |
126
- | 0.0 | 74.0 | 296 | 0.5007 | 0.9453 |
127
- | 0.0 | 75.0 | 300 | 0.5019 | 0.9453 |
128
- | 0.0 | 76.0 | 304 | 0.5031 | 0.9453 |
129
- | 0.0 | 77.0 | 308 | 0.5046 | 0.9453 |
130
- | 0.0 | 78.0 | 312 | 0.5059 | 0.9453 |
131
- | 0.0 | 79.0 | 316 | 0.5076 | 0.9453 |
132
- | 0.0 | 80.0 | 320 | 0.5092 | 0.9453 |
133
- | 0.0 | 81.0 | 324 | 0.5106 | 0.9453 |
134
- | 0.0 | 82.0 | 328 | 0.5118 | 0.9453 |
135
- | 0.0 | 83.0 | 332 | 0.5129 | 0.9453 |
136
- | 0.0 | 84.0 | 336 | 0.5139 | 0.9453 |
137
- | 0.0 | 85.0 | 340 | 0.5150 | 0.9453 |
138
- | 0.0 | 86.0 | 344 | 0.5162 | 0.9453 |
139
- | 0.0 | 87.0 | 348 | 0.5179 | 0.9531 |
140
- | 0.0 | 88.0 | 352 | 0.5197 | 0.9531 |
141
- | 0.0 | 89.0 | 356 | 0.5211 | 0.9531 |
142
- | 0.0 | 90.0 | 360 | 0.5225 | 0.9531 |
143
- | 0.0 | 91.0 | 364 | 0.5238 | 0.9531 |
144
- | 0.0 | 92.0 | 368 | 0.5251 | 0.9531 |
145
- | 0.0 | 93.0 | 372 | 0.5261 | 0.9531 |
146
- | 0.0 | 94.0 | 376 | 0.5273 | 0.9531 |
147
- | 0.0 | 95.0 | 380 | 0.5284 | 0.9531 |
148
- | 0.0 | 96.0 | 384 | 0.5297 | 0.9531 |
149
- | 0.0 | 97.0 | 388 | 0.5308 | 0.9531 |
150
- | 0.0 | 98.0 | 392 | 0.5318 | 0.9531 |
151
- | 0.0 | 99.0 | 396 | 0.5327 | 0.9531 |
152
- | 0.0 | 100.0 | 400 | 0.5337 | 0.9531 |
153
- | 0.0 | 101.0 | 404 | 0.5331 | 0.9531 |
154
- | 0.0 | 102.0 | 408 | 0.5330 | 0.9531 |
155
- | 0.0 | 103.0 | 412 | 0.5334 | 0.9531 |
156
- | 0.0 | 104.0 | 416 | 0.5340 | 0.9531 |
157
- | 0.0 | 105.0 | 420 | 0.5348 | 0.9531 |
158
- | 0.0 | 106.0 | 424 | 0.5356 | 0.9531 |
159
- | 0.0 | 107.0 | 428 | 0.5365 | 0.9531 |
160
- | 0.0 | 108.0 | 432 | 0.5375 | 0.9531 |
161
- | 0.0 | 109.0 | 436 | 0.5388 | 0.9531 |
162
- | 0.0 | 110.0 | 440 | 0.5401 | 0.9531 |
163
- | 0.0 | 111.0 | 444 | 0.5410 | 0.9531 |
164
- | 0.0 | 112.0 | 448 | 0.5417 | 0.9531 |
165
- | 0.0 | 113.0 | 452 | 0.5425 | 0.9531 |
166
- | 0.0 | 114.0 | 456 | 0.5433 | 0.9531 |
167
- | 0.0 | 115.0 | 460 | 0.5441 | 0.9531 |
168
- | 0.0 | 116.0 | 464 | 0.5448 | 0.9531 |
169
- | 0.0 | 117.0 | 468 | 0.5458 | 0.9531 |
170
- | 0.0 | 118.0 | 472 | 0.5467 | 0.9531 |
171
- | 0.0 | 119.0 | 476 | 0.5477 | 0.9531 |
172
- | 0.0 | 120.0 | 480 | 0.5487 | 0.9531 |
173
- | 0.0 | 121.0 | 484 | 0.5499 | 0.9531 |
174
- | 0.0 | 122.0 | 488 | 0.5511 | 0.9531 |
175
- | 0.0 | 123.0 | 492 | 0.5522 | 0.9531 |
176
- | 0.0 | 124.0 | 496 | 0.5530 | 0.9531 |
177
- | 0.0 | 125.0 | 500 | 0.5538 | 0.9531 |
178
- | 0.0 | 126.0 | 504 | 0.5546 | 0.9531 |
179
- | 0.0 | 127.0 | 508 | 0.5554 | 0.9531 |
180
- | 0.0 | 128.0 | 512 | 0.5562 | 0.9531 |
181
- | 0.0 | 129.0 | 516 | 0.5569 | 0.9531 |
182
- | 0.0 | 130.0 | 520 | 0.5576 | 0.9531 |
183
- | 0.0 | 131.0 | 524 | 0.5582 | 0.9531 |
184
- | 0.0 | 132.0 | 528 | 0.5594 | 0.9531 |
185
- | 0.0 | 133.0 | 532 | 0.5608 | 0.9531 |
186
- | 0.0 | 134.0 | 536 | 0.5618 | 0.9531 |
187
- | 0.0 | 135.0 | 540 | 0.5626 | 0.9531 |
188
- | 0.0 | 136.0 | 544 | 0.5634 | 0.9531 |
189
- | 0.0 | 137.0 | 548 | 0.5642 | 0.9531 |
190
- | 0.0 | 138.0 | 552 | 0.5646 | 0.9531 |
191
- | 0.0 | 139.0 | 556 | 0.5650 | 0.9531 |
192
- | 0.0 | 140.0 | 560 | 0.5653 | 0.9531 |
193
- | 0.0 | 141.0 | 564 | 0.5657 | 0.9531 |
194
- | 0.0 | 142.0 | 568 | 0.5660 | 0.9531 |
195
- | 0.0 | 143.0 | 572 | 0.5662 | 0.9531 |
196
- | 0.0 | 144.0 | 576 | 0.5664 | 0.9531 |
197
- | 0.0 | 145.0 | 580 | 0.5666 | 0.9531 |
198
- | 0.0 | 146.0 | 584 | 0.5667 | 0.9531 |
199
- | 0.0 | 147.0 | 588 | 0.5668 | 0.9531 |
200
- | 0.0 | 148.0 | 592 | 0.5668 | 0.9531 |
201
- | 0.0 | 149.0 | 596 | 0.5667 | 0.9531 |
202
- | 0.0 | 150.0 | 600 | 0.5667 | 0.9531 |
203
 
204
 
205
  ### Framework versions
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: albert-base-v2
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
15
 
16
  # best_model-yelp_polarity-64-13
17
 
18
+ This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.9118
21
+ - Accuracy: 0.9062
22
 
23
  ## Model description
24
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 4 | 0.9825 | 0.8828 |
54
+ | No log | 2.0 | 8 | 0.9391 | 0.8906 |
55
+ | 0.0791 | 3.0 | 12 | 0.8979 | 0.8984 |
56
+ | 0.0791 | 4.0 | 16 | 0.8416 | 0.875 |
57
+ | 0.0238 | 5.0 | 20 | 0.8260 | 0.8906 |
58
+ | 0.0238 | 6.0 | 24 | 0.8079 | 0.8984 |
59
+ | 0.0238 | 7.0 | 28 | 0.7782 | 0.8906 |
60
+ | 0.0015 | 8.0 | 32 | 0.7635 | 0.8984 |
61
+ | 0.0015 | 9.0 | 36 | 0.7694 | 0.9062 |
62
+ | 0.0001 | 10.0 | 40 | 0.7757 | 0.9062 |
63
+ | 0.0001 | 11.0 | 44 | 0.7786 | 0.9141 |
64
+ | 0.0001 | 12.0 | 48 | 0.7749 | 0.9141 |
65
+ | 0.0 | 13.0 | 52 | 0.7730 | 0.9141 |
66
+ | 0.0 | 14.0 | 56 | 0.7692 | 0.9141 |
67
+ | 0.0 | 15.0 | 60 | 0.7662 | 0.9141 |
68
+ | 0.0 | 16.0 | 64 | 0.7640 | 0.9141 |
69
+ | 0.0 | 17.0 | 68 | 0.7616 | 0.9141 |
70
+ | 0.0 | 18.0 | 72 | 0.7600 | 0.9141 |
71
+ | 0.0 | 19.0 | 76 | 0.7608 | 0.9141 |
72
+ | 0.0 | 20.0 | 80 | 0.7625 | 0.9141 |
73
+ | 0.0 | 21.0 | 84 | 0.7641 | 0.9141 |
74
+ | 0.0 | 22.0 | 88 | 0.7656 | 0.9141 |
75
+ | 0.0 | 23.0 | 92 | 0.7670 | 0.9141 |
76
+ | 0.0 | 24.0 | 96 | 0.7692 | 0.9141 |
77
+ | 0.0 | 25.0 | 100 | 0.7709 | 0.9141 |
78
+ | 0.0 | 26.0 | 104 | 0.7737 | 0.9141 |
79
+ | 0.0 | 27.0 | 108 | 0.7763 | 0.9141 |
80
+ | 0.0 | 28.0 | 112 | 0.7774 | 0.9141 |
81
+ | 0.0 | 29.0 | 116 | 0.7802 | 0.9141 |
82
+ | 0.0 | 30.0 | 120 | 0.7819 | 0.9141 |
83
+ | 0.0 | 31.0 | 124 | 0.7846 | 0.9141 |
84
+ | 0.0 | 32.0 | 128 | 0.7864 | 0.9141 |
85
+ | 0.0 | 33.0 | 132 | 0.7891 | 0.9141 |
86
+ | 0.0 | 34.0 | 136 | 0.7923 | 0.9141 |
87
+ | 0.0 | 35.0 | 140 | 0.7953 | 0.9141 |
88
+ | 0.0 | 36.0 | 144 | 0.7967 | 0.9141 |
89
+ | 0.0 | 37.0 | 148 | 0.7973 | 0.9141 |
90
+ | 0.0 | 38.0 | 152 | 0.7987 | 0.9141 |
91
+ | 0.0 | 39.0 | 156 | 0.8002 | 0.9141 |
92
+ | 0.0 | 40.0 | 160 | 0.8022 | 0.9141 |
93
+ | 0.0 | 41.0 | 164 | 0.8030 | 0.9141 |
94
+ | 0.0 | 42.0 | 168 | 0.8043 | 0.9141 |
95
+ | 0.0 | 43.0 | 172 | 0.8048 | 0.9141 |
96
+ | 0.0 | 44.0 | 176 | 0.8057 | 0.9141 |
97
+ | 0.0 | 45.0 | 180 | 0.8068 | 0.9141 |
98
+ | 0.0 | 46.0 | 184 | 0.8080 | 0.9141 |
99
+ | 0.0 | 47.0 | 188 | 0.8104 | 0.9141 |
100
+ | 0.0 | 48.0 | 192 | 0.8121 | 0.9141 |
101
+ | 0.0 | 49.0 | 196 | 0.8122 | 0.9141 |
102
+ | 0.0 | 50.0 | 200 | 0.8133 | 0.9141 |
103
+ | 0.0 | 51.0 | 204 | 0.8146 | 0.9141 |
104
+ | 0.0 | 52.0 | 208 | 0.8154 | 0.9141 |
105
+ | 0.0 | 53.0 | 212 | 0.8160 | 0.9141 |
106
+ | 0.0 | 54.0 | 216 | 0.8182 | 0.9141 |
107
+ | 0.0 | 55.0 | 220 | 0.8204 | 0.9141 |
108
+ | 0.0 | 56.0 | 224 | 0.8226 | 0.9141 |
109
+ | 0.0 | 57.0 | 228 | 0.8228 | 0.9141 |
110
+ | 0.0 | 58.0 | 232 | 0.8241 | 0.9141 |
111
+ | 0.0 | 59.0 | 236 | 0.8263 | 0.9141 |
112
+ | 0.0 | 60.0 | 240 | 0.8284 | 0.9062 |
113
+ | 0.0 | 61.0 | 244 | 0.8287 | 0.9062 |
114
+ | 0.0 | 62.0 | 248 | 0.8300 | 0.9062 |
115
+ | 0.0 | 63.0 | 252 | 0.8317 | 0.9062 |
116
+ | 0.0 | 64.0 | 256 | 0.8327 | 0.9062 |
117
+ | 0.0 | 65.0 | 260 | 0.8342 | 0.9062 |
118
+ | 0.0 | 66.0 | 264 | 0.8353 | 0.9062 |
119
+ | 0.0 | 67.0 | 268 | 0.8369 | 0.9062 |
120
+ | 0.0 | 68.0 | 272 | 0.8378 | 0.9062 |
121
+ | 0.0 | 69.0 | 276 | 0.8386 | 0.9062 |
122
+ | 0.0 | 70.0 | 280 | 0.8394 | 0.9062 |
123
+ | 0.0 | 71.0 | 284 | 0.8403 | 0.9062 |
124
+ | 0.0 | 72.0 | 288 | 0.8413 | 0.9062 |
125
+ | 0.0 | 73.0 | 292 | 0.8414 | 0.9062 |
126
+ | 0.0 | 74.0 | 296 | 0.8430 | 0.9062 |
127
+ | 0.0 | 75.0 | 300 | 0.8439 | 0.9062 |
128
+ | 0.0 | 76.0 | 304 | 0.8452 | 0.9062 |
129
+ | 0.0 | 77.0 | 308 | 0.8469 | 0.9062 |
130
+ | 0.0 | 78.0 | 312 | 0.8484 | 0.9062 |
131
+ | 0.0 | 79.0 | 316 | 0.8499 | 0.9062 |
132
+ | 0.0 | 80.0 | 320 | 0.8517 | 0.9062 |
133
+ | 0.0 | 81.0 | 324 | 0.8533 | 0.9062 |
134
+ | 0.0 | 82.0 | 328 | 0.8538 | 0.9062 |
135
+ | 0.0 | 83.0 | 332 | 0.8549 | 0.9062 |
136
+ | 0.0 | 84.0 | 336 | 0.8565 | 0.9062 |
137
+ | 0.0 | 85.0 | 340 | 0.8575 | 0.9062 |
138
+ | 0.0 | 86.0 | 344 | 0.8585 | 0.9062 |
139
+ | 0.0 | 87.0 | 348 | 0.8596 | 0.9062 |
140
+ | 0.0 | 88.0 | 352 | 0.8609 | 0.9062 |
141
+ | 0.0 | 89.0 | 356 | 0.8623 | 0.9062 |
142
+ | 0.0 | 90.0 | 360 | 0.8641 | 0.9062 |
143
+ | 0.0 | 91.0 | 364 | 0.8653 | 0.9062 |
144
+ | 0.0 | 92.0 | 368 | 0.8664 | 0.9062 |
145
+ | 0.0 | 93.0 | 372 | 0.8674 | 0.9062 |
146
+ | 0.0 | 94.0 | 376 | 0.8695 | 0.9062 |
147
+ | 0.0 | 95.0 | 380 | 0.8711 | 0.9062 |
148
+ | 0.0 | 96.0 | 384 | 0.8715 | 0.9062 |
149
+ | 0.0 | 97.0 | 388 | 0.8713 | 0.9062 |
150
+ | 0.0 | 98.0 | 392 | 0.8725 | 0.9062 |
151
+ | 0.0 | 99.0 | 396 | 0.8725 | 0.9062 |
152
+ | 0.0 | 100.0 | 400 | 0.8730 | 0.9062 |
153
+ | 0.0 | 101.0 | 404 | 0.8730 | 0.9062 |
154
+ | 0.0 | 102.0 | 408 | 0.8738 | 0.9062 |
155
+ | 0.0 | 103.0 | 412 | 0.8750 | 0.9062 |
156
+ | 0.0 | 104.0 | 416 | 0.8756 | 0.9062 |
157
+ | 0.0 | 105.0 | 420 | 0.8757 | 0.9062 |
158
+ | 0.0 | 106.0 | 424 | 0.8772 | 0.9062 |
159
+ | 0.0 | 107.0 | 428 | 0.8785 | 0.9062 |
160
+ | 0.0 | 108.0 | 432 | 0.8795 | 0.9062 |
161
+ | 0.0 | 109.0 | 436 | 0.8806 | 0.9062 |
162
+ | 0.0 | 110.0 | 440 | 0.8815 | 0.9062 |
163
+ | 0.0 | 111.0 | 444 | 0.8826 | 0.9062 |
164
+ | 0.0 | 112.0 | 448 | 0.8837 | 0.9062 |
165
+ | 0.0 | 113.0 | 452 | 0.8846 | 0.9062 |
166
+ | 0.0 | 114.0 | 456 | 0.8859 | 0.9062 |
167
+ | 0.0 | 115.0 | 460 | 0.8877 | 0.9062 |
168
+ | 0.0 | 116.0 | 464 | 0.8891 | 0.9062 |
169
+ | 0.0 | 117.0 | 468 | 0.8913 | 0.9062 |
170
+ | 0.0 | 118.0 | 472 | 0.8926 | 0.9062 |
171
+ | 0.0 | 119.0 | 476 | 0.8940 | 0.9062 |
172
+ | 0.0 | 120.0 | 480 | 0.8959 | 0.9062 |
173
+ | 0.0 | 121.0 | 484 | 0.8978 | 0.9062 |
174
+ | 0.0 | 122.0 | 488 | 0.8987 | 0.9062 |
175
+ | 0.0 | 123.0 | 492 | 0.8999 | 0.9062 |
176
+ | 0.0 | 124.0 | 496 | 0.8998 | 0.9062 |
177
+ | 0.0 | 125.0 | 500 | 0.9010 | 0.9062 |
178
+ | 0.0 | 126.0 | 504 | 0.9019 | 0.9062 |
179
+ | 0.0 | 127.0 | 508 | 0.9031 | 0.9062 |
180
+ | 0.0 | 128.0 | 512 | 0.9036 | 0.9062 |
181
+ | 0.0 | 129.0 | 516 | 0.9039 | 0.9062 |
182
+ | 0.0 | 130.0 | 520 | 0.9043 | 0.9062 |
183
+ | 0.0 | 131.0 | 524 | 0.9043 | 0.9062 |
184
+ | 0.0 | 132.0 | 528 | 0.9052 | 0.9062 |
185
+ | 0.0 | 133.0 | 532 | 0.9052 | 0.9062 |
186
+ | 0.0 | 134.0 | 536 | 0.9060 | 0.9062 |
187
+ | 0.0 | 135.0 | 540 | 0.9071 | 0.9062 |
188
+ | 0.0 | 136.0 | 544 | 0.9078 | 0.9062 |
189
+ | 0.0 | 137.0 | 548 | 0.9085 | 0.9062 |
190
+ | 0.0 | 138.0 | 552 | 0.9087 | 0.9062 |
191
+ | 0.0 | 139.0 | 556 | 0.9094 | 0.9062 |
192
+ | 0.0 | 140.0 | 560 | 0.9097 | 0.9062 |
193
+ | 0.0 | 141.0 | 564 | 0.9101 | 0.9062 |
194
+ | 0.0 | 142.0 | 568 | 0.9105 | 0.9062 |
195
+ | 0.0 | 143.0 | 572 | 0.9108 | 0.9062 |
196
+ | 0.0 | 144.0 | 576 | 0.9110 | 0.9062 |
197
+ | 0.0 | 145.0 | 580 | 0.9112 | 0.9062 |
198
+ | 0.0 | 146.0 | 584 | 0.9115 | 0.9062 |
199
+ | 0.0 | 147.0 | 588 | 0.9116 | 0.9062 |
200
+ | 0.0 | 148.0 | 592 | 0.9117 | 0.9062 |
201
+ | 0.0 | 149.0 | 596 | 0.9118 | 0.9062 |
202
+ | 0.0 | 150.0 | 600 | 0.9118 | 0.9062 |
203
 
204
 
205
  ### Framework versions