--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: best_model-yelp_polarity-64-100 results: [] --- # best_model-yelp_polarity-64-100 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co./albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7418 - Accuracy: 0.9219 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.8689 | 0.9062 | | No log | 2.0 | 8 | 0.8610 | 0.9062 | | 0.4308 | 3.0 | 12 | 0.8208 | 0.9062 | | 0.4308 | 4.0 | 16 | 0.7905 | 0.9141 | | 0.34 | 5.0 | 20 | 0.7690 | 0.9141 | | 0.34 | 6.0 | 24 | 0.7703 | 0.9141 | | 0.34 | 7.0 | 28 | 0.7918 | 0.9141 | | 0.2192 | 8.0 | 32 | 0.7998 | 0.9062 | | 0.2192 | 9.0 | 36 | 0.8100 | 0.9062 | | 0.1324 | 10.0 | 40 | 0.8201 | 0.9062 | | 0.1324 | 11.0 | 44 | 0.8098 | 0.9062 | | 0.1324 | 12.0 | 48 | 0.7964 | 0.9062 | | 0.0915 | 13.0 | 52 | 0.7568 | 0.9062 | | 0.0915 | 14.0 | 56 | 0.7334 | 0.9062 | | 0.0043 | 15.0 | 60 | 0.6802 | 0.9062 | | 0.0043 | 16.0 | 64 | 0.6424 | 0.9141 | | 0.0043 | 17.0 | 68 | 0.6256 | 0.9141 | | 0.0 | 18.0 | 72 | 0.6206 | 0.9141 | | 0.0 | 19.0 | 76 | 0.6239 | 0.9141 | | 0.0 | 20.0 | 80 | 0.6272 | 0.9141 | | 0.0 | 21.0 | 84 | 0.6317 | 0.9141 | | 0.0 | 22.0 | 88 | 0.6363 | 0.9141 | | 0.0 | 23.0 | 92 | 0.6404 | 0.9141 | | 0.0 | 24.0 | 96 | 0.6448 | 0.9141 | | 0.0 | 25.0 | 100 | 0.6481 | 0.9062 | | 0.0 | 26.0 | 104 | 0.6504 | 0.9062 | | 0.0 | 27.0 | 108 | 0.6511 | 0.9062 | | 0.0 | 28.0 | 112 | 0.6515 | 0.9062 | | 0.0 | 29.0 | 116 | 0.6518 | 0.9141 | | 0.0 | 30.0 | 120 | 0.6518 | 0.9141 | | 0.0 | 31.0 | 124 | 0.6517 | 0.9141 | | 0.0 | 32.0 | 128 | 0.6517 | 0.9141 | | 0.0 | 33.0 | 132 | 0.6518 | 0.9141 | | 0.0 | 34.0 | 136 | 0.6524 | 0.9141 | | 0.0 | 35.0 | 140 | 0.6528 | 0.9141 | | 0.0 | 36.0 | 144 | 0.6535 | 0.9141 | | 0.0 | 37.0 | 148 | 0.6540 | 0.9141 | | 0.0 | 38.0 | 152 | 0.6545 | 0.9141 | | 0.0 | 39.0 | 156 | 0.6553 | 0.9141 | | 0.0 | 40.0 | 160 | 0.6558 | 0.9141 | | 0.0 | 41.0 | 164 | 0.6566 | 0.9141 | | 0.0 | 42.0 | 168 | 0.6574 | 0.9141 | | 0.0 | 43.0 | 172 | 0.6584 | 0.9141 | | 0.0 | 44.0 | 176 | 0.6596 | 0.9141 | | 0.0 | 45.0 | 180 | 0.6605 | 0.9141 | | 0.0 | 46.0 | 184 | 0.6616 | 0.9141 | | 0.0 | 47.0 | 188 | 0.6626 | 0.9141 | | 0.0 | 48.0 | 192 | 0.6633 | 0.9141 | | 0.0 | 49.0 | 196 | 0.6642 | 0.9219 | | 0.0 | 50.0 | 200 | 0.6649 | 0.9219 | | 0.0 | 51.0 | 204 | 0.6660 | 0.9219 | | 0.0 | 52.0 | 208 | 0.6670 | 0.9219 | | 0.0 | 53.0 | 212 | 0.6679 | 0.9219 | | 0.0 | 54.0 | 216 | 0.6688 | 0.9219 | | 0.0 | 55.0 | 220 | 0.6694 | 0.9219 | | 0.0 | 56.0 | 224 | 0.6701 | 0.9219 | | 0.0 | 57.0 | 228 | 0.6710 | 0.9219 | | 0.0 | 58.0 | 232 | 0.6718 | 0.9219 | | 0.0 | 59.0 | 236 | 0.6723 | 0.9219 | | 0.0 | 60.0 | 240 | 0.6733 | 0.9219 | | 0.0 | 61.0 | 244 | 0.6741 | 0.9219 | | 0.0 | 62.0 | 248 | 0.6749 | 0.9219 | | 0.0 | 63.0 | 252 | 0.6759 | 0.9219 | | 0.0 | 64.0 | 256 | 0.6766 | 0.9219 | | 0.0 | 65.0 | 260 | 0.6773 | 0.9219 | | 0.0 | 66.0 | 264 | 0.6783 | 0.9219 | | 0.0 | 67.0 | 268 | 0.6791 | 0.9219 | | 0.0 | 68.0 | 272 | 0.6803 | 0.9219 | | 0.0 | 69.0 | 276 | 0.6813 | 0.9219 | | 0.0 | 70.0 | 280 | 0.6824 | 0.9219 | | 0.0 | 71.0 | 284 | 0.6831 | 0.9219 | | 0.0 | 72.0 | 288 | 0.6839 | 0.9219 | | 0.0 | 73.0 | 292 | 0.6850 | 0.9219 | | 0.0 | 74.0 | 296 | 0.6860 | 0.9219 | | 0.0 | 75.0 | 300 | 0.6866 | 0.9219 | | 0.0 | 76.0 | 304 | 0.6874 | 0.9219 | | 0.0 | 77.0 | 308 | 0.6883 | 0.9219 | | 0.0 | 78.0 | 312 | 0.6892 | 0.9219 | | 0.0 | 79.0 | 316 | 0.6901 | 0.9219 | | 0.0 | 80.0 | 320 | 0.6910 | 0.9219 | | 0.0 | 81.0 | 324 | 0.6919 | 0.9219 | | 0.0 | 82.0 | 328 | 0.6929 | 0.9219 | | 0.0 | 83.0 | 332 | 0.6937 | 0.9219 | | 0.0 | 84.0 | 336 | 0.6948 | 0.9219 | | 0.0 | 85.0 | 340 | 0.6957 | 0.9219 | | 0.0 | 86.0 | 344 | 0.6968 | 0.9219 | | 0.0 | 87.0 | 348 | 0.6978 | 0.9219 | | 0.0 | 88.0 | 352 | 0.6988 | 0.9219 | | 0.0 | 89.0 | 356 | 0.6999 | 0.9219 | | 0.0 | 90.0 | 360 | 0.7008 | 0.9219 | | 0.0 | 91.0 | 364 | 0.7015 | 0.9219 | | 0.0 | 92.0 | 368 | 0.7021 | 0.9219 | | 0.0 | 93.0 | 372 | 0.7030 | 0.9219 | | 0.0 | 94.0 | 376 | 0.7037 | 0.9219 | | 0.0 | 95.0 | 380 | 0.7046 | 0.9219 | | 0.0 | 96.0 | 384 | 0.7054 | 0.9219 | | 0.0 | 97.0 | 388 | 0.7063 | 0.9219 | | 0.0 | 98.0 | 392 | 0.7069 | 0.9219 | | 0.0 | 99.0 | 396 | 0.7080 | 0.9219 | | 0.0 | 100.0 | 400 | 0.7089 | 0.9219 | | 0.0 | 101.0 | 404 | 0.7098 | 0.9219 | | 0.0 | 102.0 | 408 | 0.7107 | 0.9219 | | 0.0 | 103.0 | 412 | 0.7118 | 0.9219 | | 0.0 | 104.0 | 416 | 0.7131 | 0.9219 | | 0.0 | 105.0 | 420 | 0.7140 | 0.9219 | | 0.0 | 106.0 | 424 | 0.7149 | 0.9219 | | 0.0 | 107.0 | 428 | 0.7161 | 0.9219 | | 0.0 | 108.0 | 432 | 0.7174 | 0.9219 | | 0.0 | 109.0 | 436 | 0.7183 | 0.9219 | | 0.0 | 110.0 | 440 | 0.7193 | 0.9219 | | 0.0 | 111.0 | 444 | 0.7203 | 0.9219 | | 0.0 | 112.0 | 448 | 0.7210 | 0.9219 | | 0.0 | 113.0 | 452 | 0.7217 | 0.9219 | | 0.0 | 114.0 | 456 | 0.7226 | 0.9219 | | 0.0 | 115.0 | 460 | 0.7231 | 0.9219 | | 0.0 | 116.0 | 464 | 0.7237 | 0.9219 | | 0.0 | 117.0 | 468 | 0.7245 | 0.9219 | | 0.0 | 118.0 | 472 | 0.7253 | 0.9219 | | 0.0 | 119.0 | 476 | 0.7259 | 0.9219 | | 0.0 | 120.0 | 480 | 0.7269 | 0.9219 | | 0.0 | 121.0 | 484 | 0.7279 | 0.9219 | | 0.0 | 122.0 | 488 | 0.7289 | 0.9219 | | 0.0 | 123.0 | 492 | 0.7297 | 0.9219 | | 0.0 | 124.0 | 496 | 0.7308 | 0.9219 | | 0.0 | 125.0 | 500 | 0.7315 | 0.9219 | | 0.0 | 126.0 | 504 | 0.7324 | 0.9219 | | 0.0 | 127.0 | 508 | 0.7330 | 0.9219 | | 0.0 | 128.0 | 512 | 0.7336 | 0.9219 | | 0.0 | 129.0 | 516 | 0.7344 | 0.9219 | | 0.0 | 130.0 | 520 | 0.7352 | 0.9219 | | 0.0 | 131.0 | 524 | 0.7361 | 0.9219 | | 0.0 | 132.0 | 528 | 0.7366 | 0.9219 | | 0.0 | 133.0 | 532 | 0.7373 | 0.9219 | | 0.0 | 134.0 | 536 | 0.7380 | 0.9219 | | 0.0 | 135.0 | 540 | 0.7385 | 0.9219 | | 0.0 | 136.0 | 544 | 0.7390 | 0.9219 | | 0.0 | 137.0 | 548 | 0.7394 | 0.9219 | | 0.0 | 138.0 | 552 | 0.7399 | 0.9219 | | 0.0 | 139.0 | 556 | 0.7402 | 0.9219 | | 0.0 | 140.0 | 560 | 0.7405 | 0.9219 | | 0.0 | 141.0 | 564 | 0.7408 | 0.9219 | | 0.0 | 142.0 | 568 | 0.7410 | 0.9219 | | 0.0 | 143.0 | 572 | 0.7412 | 0.9219 | | 0.0 | 144.0 | 576 | 0.7414 | 0.9219 | | 0.0 | 145.0 | 580 | 0.7415 | 0.9219 | | 0.0 | 146.0 | 584 | 0.7417 | 0.9219 | | 0.0 | 147.0 | 588 | 0.7417 | 0.9219 | | 0.0 | 148.0 | 592 | 0.7418 | 0.9219 | | 0.0 | 149.0 | 596 | 0.7418 | 0.9219 | | 0.0 | 150.0 | 600 | 0.7418 | 0.9219 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3