update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: best_model-sst-2-64-13
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# best_model-sst-2-64-13
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.0984
|
21 |
+
- Accuracy: 0.7969
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 500
|
47 |
+
- num_epochs: 150
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 4 | 0.8163 | 0.7578 |
|
54 |
+
| No log | 2.0 | 8 | 0.8152 | 0.7578 |
|
55 |
+
| 0.3744 | 3.0 | 12 | 0.8132 | 0.7578 |
|
56 |
+
| 0.3744 | 4.0 | 16 | 0.8101 | 0.7578 |
|
57 |
+
| 0.2942 | 5.0 | 20 | 0.8062 | 0.7578 |
|
58 |
+
| 0.2942 | 6.0 | 24 | 0.8015 | 0.7578 |
|
59 |
+
| 0.2942 | 7.0 | 28 | 0.7956 | 0.7578 |
|
60 |
+
| 0.2802 | 8.0 | 32 | 0.7892 | 0.7578 |
|
61 |
+
| 0.2802 | 9.0 | 36 | 0.7832 | 0.7578 |
|
62 |
+
| 0.2775 | 10.0 | 40 | 0.7759 | 0.7656 |
|
63 |
+
| 0.2775 | 11.0 | 44 | 0.7684 | 0.7656 |
|
64 |
+
| 0.2775 | 12.0 | 48 | 0.7613 | 0.7734 |
|
65 |
+
| 0.2629 | 13.0 | 52 | 0.7535 | 0.7812 |
|
66 |
+
| 0.2629 | 14.0 | 56 | 0.7458 | 0.7812 |
|
67 |
+
| 0.1656 | 15.0 | 60 | 0.7352 | 0.7734 |
|
68 |
+
| 0.1656 | 16.0 | 64 | 0.7253 | 0.7734 |
|
69 |
+
| 0.1656 | 17.0 | 68 | 0.7179 | 0.7656 |
|
70 |
+
| 0.2032 | 18.0 | 72 | 0.7089 | 0.7734 |
|
71 |
+
| 0.2032 | 19.0 | 76 | 0.6996 | 0.7734 |
|
72 |
+
| 0.1397 | 20.0 | 80 | 0.6935 | 0.7734 |
|
73 |
+
| 0.1397 | 21.0 | 84 | 0.6916 | 0.7812 |
|
74 |
+
| 0.1397 | 22.0 | 88 | 0.6879 | 0.7891 |
|
75 |
+
| 0.0971 | 23.0 | 92 | 0.6829 | 0.7891 |
|
76 |
+
| 0.0971 | 24.0 | 96 | 0.6678 | 0.7812 |
|
77 |
+
| 0.0483 | 25.0 | 100 | 0.6503 | 0.7734 |
|
78 |
+
| 0.0483 | 26.0 | 104 | 0.6394 | 0.7891 |
|
79 |
+
| 0.0483 | 27.0 | 108 | 0.6372 | 0.7891 |
|
80 |
+
| 0.0261 | 28.0 | 112 | 0.6343 | 0.7891 |
|
81 |
+
| 0.0261 | 29.0 | 116 | 0.6357 | 0.8047 |
|
82 |
+
| 0.0186 | 30.0 | 120 | 0.6444 | 0.8047 |
|
83 |
+
| 0.0186 | 31.0 | 124 | 0.6516 | 0.8047 |
|
84 |
+
| 0.0186 | 32.0 | 128 | 0.6572 | 0.8125 |
|
85 |
+
| 0.0088 | 33.0 | 132 | 0.6569 | 0.8047 |
|
86 |
+
| 0.0088 | 34.0 | 136 | 0.6629 | 0.8047 |
|
87 |
+
| 0.0081 | 35.0 | 140 | 0.6660 | 0.8125 |
|
88 |
+
| 0.0081 | 36.0 | 144 | 0.6707 | 0.8047 |
|
89 |
+
| 0.0081 | 37.0 | 148 | 0.6774 | 0.8047 |
|
90 |
+
| 0.0056 | 38.0 | 152 | 0.6836 | 0.8047 |
|
91 |
+
| 0.0056 | 39.0 | 156 | 0.6893 | 0.8047 |
|
92 |
+
| 0.0047 | 40.0 | 160 | 0.6946 | 0.8047 |
|
93 |
+
| 0.0047 | 41.0 | 164 | 0.6988 | 0.8125 |
|
94 |
+
| 0.0047 | 42.0 | 168 | 0.7042 | 0.8203 |
|
95 |
+
| 0.0046 | 43.0 | 172 | 0.7088 | 0.8203 |
|
96 |
+
| 0.0046 | 44.0 | 176 | 0.7104 | 0.8203 |
|
97 |
+
| 0.0043 | 45.0 | 180 | 0.7139 | 0.8203 |
|
98 |
+
| 0.0043 | 46.0 | 184 | 0.7181 | 0.8203 |
|
99 |
+
| 0.0043 | 47.0 | 188 | 0.7222 | 0.8203 |
|
100 |
+
| 0.003 | 48.0 | 192 | 0.7264 | 0.8203 |
|
101 |
+
| 0.003 | 49.0 | 196 | 0.7304 | 0.8281 |
|
102 |
+
| 0.0028 | 50.0 | 200 | 0.7345 | 0.8281 |
|
103 |
+
| 0.0028 | 51.0 | 204 | 0.7391 | 0.8281 |
|
104 |
+
| 0.0028 | 52.0 | 208 | 0.7461 | 0.8203 |
|
105 |
+
| 0.0029 | 53.0 | 212 | 0.7573 | 0.8281 |
|
106 |
+
| 0.0029 | 54.0 | 216 | 0.7679 | 0.8125 |
|
107 |
+
| 0.0025 | 55.0 | 220 | 0.7920 | 0.8125 |
|
108 |
+
| 0.0025 | 56.0 | 224 | 0.8067 | 0.8125 |
|
109 |
+
| 0.0025 | 57.0 | 228 | 0.8099 | 0.8125 |
|
110 |
+
| 0.0021 | 58.0 | 232 | 0.8078 | 0.8203 |
|
111 |
+
| 0.0021 | 59.0 | 236 | 0.8036 | 0.8203 |
|
112 |
+
| 0.0018 | 60.0 | 240 | 0.8014 | 0.8125 |
|
113 |
+
| 0.0018 | 61.0 | 244 | 0.8013 | 0.8203 |
|
114 |
+
| 0.0018 | 62.0 | 248 | 0.8025 | 0.8281 |
|
115 |
+
| 0.0017 | 63.0 | 252 | 0.8049 | 0.8281 |
|
116 |
+
| 0.0017 | 64.0 | 256 | 0.8072 | 0.8281 |
|
117 |
+
| 0.0015 | 65.0 | 260 | 0.8103 | 0.8203 |
|
118 |
+
| 0.0015 | 66.0 | 264 | 0.8147 | 0.8203 |
|
119 |
+
| 0.0015 | 67.0 | 268 | 0.8187 | 0.8203 |
|
120 |
+
| 0.0014 | 68.0 | 272 | 0.8226 | 0.8281 |
|
121 |
+
| 0.0014 | 69.0 | 276 | 0.8266 | 0.8281 |
|
122 |
+
| 0.0013 | 70.0 | 280 | 0.8308 | 0.8281 |
|
123 |
+
| 0.0013 | 71.0 | 284 | 0.8349 | 0.8281 |
|
124 |
+
| 0.0013 | 72.0 | 288 | 0.8390 | 0.8281 |
|
125 |
+
| 0.0012 | 73.0 | 292 | 0.8431 | 0.8281 |
|
126 |
+
| 0.0012 | 74.0 | 296 | 0.8472 | 0.8281 |
|
127 |
+
| 0.0011 | 75.0 | 300 | 0.8513 | 0.8281 |
|
128 |
+
| 0.0011 | 76.0 | 304 | 0.8554 | 0.8281 |
|
129 |
+
| 0.0011 | 77.0 | 308 | 0.8595 | 0.8281 |
|
130 |
+
| 0.001 | 78.0 | 312 | 0.8637 | 0.8281 |
|
131 |
+
| 0.001 | 79.0 | 316 | 0.8678 | 0.8281 |
|
132 |
+
| 0.0009 | 80.0 | 320 | 0.8720 | 0.8281 |
|
133 |
+
| 0.0009 | 81.0 | 324 | 0.8762 | 0.8281 |
|
134 |
+
| 0.0009 | 82.0 | 328 | 0.8805 | 0.8203 |
|
135 |
+
| 0.0009 | 83.0 | 332 | 0.8847 | 0.8203 |
|
136 |
+
| 0.0009 | 84.0 | 336 | 0.8889 | 0.8203 |
|
137 |
+
| 0.0008 | 85.0 | 340 | 0.8931 | 0.8203 |
|
138 |
+
| 0.0008 | 86.0 | 344 | 0.8976 | 0.8281 |
|
139 |
+
| 0.0008 | 87.0 | 348 | 0.9021 | 0.8281 |
|
140 |
+
| 0.0007 | 88.0 | 352 | 0.9063 | 0.8281 |
|
141 |
+
| 0.0007 | 89.0 | 356 | 0.9102 | 0.8281 |
|
142 |
+
| 0.0007 | 90.0 | 360 | 0.9137 | 0.8281 |
|
143 |
+
| 0.0007 | 91.0 | 364 | 0.9173 | 0.8281 |
|
144 |
+
| 0.0007 | 92.0 | 368 | 0.9208 | 0.8203 |
|
145 |
+
| 0.0006 | 93.0 | 372 | 0.9244 | 0.8125 |
|
146 |
+
| 0.0006 | 94.0 | 376 | 0.9279 | 0.8125 |
|
147 |
+
| 0.0006 | 95.0 | 380 | 0.9315 | 0.8125 |
|
148 |
+
| 0.0006 | 96.0 | 384 | 0.9351 | 0.8125 |
|
149 |
+
| 0.0006 | 97.0 | 388 | 0.9389 | 0.8125 |
|
150 |
+
| 0.0006 | 98.0 | 392 | 0.9442 | 0.8281 |
|
151 |
+
| 0.0006 | 99.0 | 396 | 0.9564 | 0.8438 |
|
152 |
+
| 0.0005 | 100.0 | 400 | 0.9671 | 0.8359 |
|
153 |
+
| 0.0005 | 101.0 | 404 | 0.9756 | 0.8281 |
|
154 |
+
| 0.0005 | 102.0 | 408 | 0.9801 | 0.8281 |
|
155 |
+
| 0.0005 | 103.0 | 412 | 0.9794 | 0.8438 |
|
156 |
+
| 0.0005 | 104.0 | 416 | 0.9766 | 0.8438 |
|
157 |
+
| 0.0005 | 105.0 | 420 | 0.9766 | 0.8438 |
|
158 |
+
| 0.0005 | 106.0 | 424 | 0.9782 | 0.8359 |
|
159 |
+
| 0.0005 | 107.0 | 428 | 0.9808 | 0.8359 |
|
160 |
+
| 0.0004 | 108.0 | 432 | 0.9840 | 0.8359 |
|
161 |
+
| 0.0004 | 109.0 | 436 | 0.9877 | 0.8359 |
|
162 |
+
| 0.0004 | 110.0 | 440 | 0.9920 | 0.8047 |
|
163 |
+
| 0.0004 | 111.0 | 444 | 0.9988 | 0.7969 |
|
164 |
+
| 0.0004 | 112.0 | 448 | 1.0040 | 0.8047 |
|
165 |
+
| 0.0004 | 113.0 | 452 | 1.0075 | 0.8047 |
|
166 |
+
| 0.0004 | 114.0 | 456 | 1.0109 | 0.8047 |
|
167 |
+
| 0.0003 | 115.0 | 460 | 1.0142 | 0.8047 |
|
168 |
+
| 0.0003 | 116.0 | 464 | 1.0175 | 0.8047 |
|
169 |
+
| 0.0003 | 117.0 | 468 | 1.0209 | 0.8047 |
|
170 |
+
| 0.0003 | 118.0 | 472 | 1.0244 | 0.8047 |
|
171 |
+
| 0.0003 | 119.0 | 476 | 1.0279 | 0.8047 |
|
172 |
+
| 0.0003 | 120.0 | 480 | 1.0317 | 0.8047 |
|
173 |
+
| 0.0003 | 121.0 | 484 | 1.0357 | 0.8047 |
|
174 |
+
| 0.0003 | 122.0 | 488 | 1.0398 | 0.8047 |
|
175 |
+
| 0.0003 | 123.0 | 492 | 1.0436 | 0.8047 |
|
176 |
+
| 0.0003 | 124.0 | 496 | 1.0476 | 0.7969 |
|
177 |
+
| 0.0003 | 125.0 | 500 | 1.0514 | 0.7969 |
|
178 |
+
| 0.0003 | 126.0 | 504 | 1.0552 | 0.7969 |
|
179 |
+
| 0.0003 | 127.0 | 508 | 1.0588 | 0.7969 |
|
180 |
+
| 0.0003 | 128.0 | 512 | 1.0619 | 0.7969 |
|
181 |
+
| 0.0003 | 129.0 | 516 | 1.0648 | 0.7969 |
|
182 |
+
| 0.0002 | 130.0 | 520 | 1.0676 | 0.7969 |
|
183 |
+
| 0.0002 | 131.0 | 524 | 1.0693 | 0.8047 |
|
184 |
+
| 0.0002 | 132.0 | 528 | 1.0721 | 0.7969 |
|
185 |
+
| 0.0003 | 133.0 | 532 | 1.0758 | 0.8047 |
|
186 |
+
| 0.0003 | 134.0 | 536 | 1.0791 | 0.8047 |
|
187 |
+
| 0.0002 | 135.0 | 540 | 1.0807 | 0.7969 |
|
188 |
+
| 0.0002 | 136.0 | 544 | 1.0828 | 0.8047 |
|
189 |
+
| 0.0002 | 137.0 | 548 | 1.0853 | 0.8047 |
|
190 |
+
| 0.0002 | 138.0 | 552 | 1.0879 | 0.8047 |
|
191 |
+
| 0.0002 | 139.0 | 556 | 1.0899 | 0.8047 |
|
192 |
+
| 0.0002 | 140.0 | 560 | 1.0916 | 0.8047 |
|
193 |
+
| 0.0002 | 141.0 | 564 | 1.0930 | 0.8047 |
|
194 |
+
| 0.0002 | 142.0 | 568 | 1.0941 | 0.8047 |
|
195 |
+
| 0.0002 | 143.0 | 572 | 1.0951 | 0.7969 |
|
196 |
+
| 0.0002 | 144.0 | 576 | 1.0960 | 0.7969 |
|
197 |
+
| 0.0002 | 145.0 | 580 | 1.0967 | 0.7969 |
|
198 |
+
| 0.0002 | 146.0 | 584 | 1.0973 | 0.7969 |
|
199 |
+
| 0.0002 | 147.0 | 588 | 1.0978 | 0.7969 |
|
200 |
+
| 0.0002 | 148.0 | 592 | 1.0981 | 0.7969 |
|
201 |
+
| 0.0002 | 149.0 | 596 | 1.0983 | 0.7969 |
|
202 |
+
| 0.0002 | 150.0 | 600 | 1.0984 | 0.7969 |
|
203 |
+
|
204 |
+
|
205 |
+
### Framework versions
|
206 |
+
|
207 |
+
- Transformers 4.32.0.dev0
|
208 |
+
- Pytorch 2.0.1+cu118
|
209 |
+
- Datasets 2.4.0
|
210 |
+
- Tokenizers 0.13.3
|