File size: 10,645 Bytes
da82836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: best_model-sst-2-16-21
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# best_model-sst-2-16-21

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4916
- Accuracy: 0.7812

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 1    | 0.6220          | 0.7188   |
| No log        | 2.0   | 2    | 0.6220          | 0.7188   |
| No log        | 3.0   | 3    | 0.6219          | 0.7188   |
| No log        | 4.0   | 4    | 0.6218          | 0.7188   |
| No log        | 5.0   | 5    | 0.6217          | 0.7188   |
| No log        | 6.0   | 6    | 0.6216          | 0.7188   |
| No log        | 7.0   | 7    | 0.6215          | 0.7188   |
| No log        | 8.0   | 8    | 0.6214          | 0.7188   |
| No log        | 9.0   | 9    | 0.6213          | 0.7188   |
| 0.6205        | 10.0  | 10   | 0.6211          | 0.7188   |
| 0.6205        | 11.0  | 11   | 0.6210          | 0.7188   |
| 0.6205        | 12.0  | 12   | 0.6208          | 0.7188   |
| 0.6205        | 13.0  | 13   | 0.6206          | 0.7188   |
| 0.6205        | 14.0  | 14   | 0.6204          | 0.7188   |
| 0.6205        | 15.0  | 15   | 0.6202          | 0.7188   |
| 0.6205        | 16.0  | 16   | 0.6200          | 0.7188   |
| 0.6205        | 17.0  | 17   | 0.6198          | 0.7188   |
| 0.6205        | 18.0  | 18   | 0.6196          | 0.7188   |
| 0.6205        | 19.0  | 19   | 0.6194          | 0.7188   |
| 0.6217        | 20.0  | 20   | 0.6192          | 0.6875   |
| 0.6217        | 21.0  | 21   | 0.6190          | 0.6875   |
| 0.6217        | 22.0  | 22   | 0.6189          | 0.6875   |
| 0.6217        | 23.0  | 23   | 0.6187          | 0.6875   |
| 0.6217        | 24.0  | 24   | 0.6186          | 0.6875   |
| 0.6217        | 25.0  | 25   | 0.6185          | 0.6875   |
| 0.6217        | 26.0  | 26   | 0.6184          | 0.6875   |
| 0.6217        | 27.0  | 27   | 0.6182          | 0.6875   |
| 0.6217        | 28.0  | 28   | 0.6181          | 0.6875   |
| 0.6217        | 29.0  | 29   | 0.6180          | 0.6875   |
| 0.6001        | 30.0  | 30   | 0.6179          | 0.6875   |
| 0.6001        | 31.0  | 31   | 0.6178          | 0.6875   |
| 0.6001        | 32.0  | 32   | 0.6178          | 0.6875   |
| 0.6001        | 33.0  | 33   | 0.6177          | 0.6875   |
| 0.6001        | 34.0  | 34   | 0.6177          | 0.6875   |
| 0.6001        | 35.0  | 35   | 0.6177          | 0.6875   |
| 0.6001        | 36.0  | 36   | 0.6177          | 0.6875   |
| 0.6001        | 37.0  | 37   | 0.6178          | 0.6875   |
| 0.6001        | 38.0  | 38   | 0.6178          | 0.6875   |
| 0.6001        | 39.0  | 39   | 0.6179          | 0.6562   |
| 0.5564        | 40.0  | 40   | 0.6180          | 0.6562   |
| 0.5564        | 41.0  | 41   | 0.6181          | 0.6562   |
| 0.5564        | 42.0  | 42   | 0.6181          | 0.6562   |
| 0.5564        | 43.0  | 43   | 0.6180          | 0.6562   |
| 0.5564        | 44.0  | 44   | 0.6179          | 0.6562   |
| 0.5564        | 45.0  | 45   | 0.6177          | 0.6562   |
| 0.5564        | 46.0  | 46   | 0.6174          | 0.6562   |
| 0.5564        | 47.0  | 47   | 0.6171          | 0.6562   |
| 0.5564        | 48.0  | 48   | 0.6171          | 0.6562   |
| 0.5564        | 49.0  | 49   | 0.6170          | 0.6562   |
| 0.5364        | 50.0  | 50   | 0.6172          | 0.6562   |
| 0.5364        | 51.0  | 51   | 0.6172          | 0.625    |
| 0.5364        | 52.0  | 52   | 0.6172          | 0.625    |
| 0.5364        | 53.0  | 53   | 0.6170          | 0.625    |
| 0.5364        | 54.0  | 54   | 0.6165          | 0.625    |
| 0.5364        | 55.0  | 55   | 0.6161          | 0.625    |
| 0.5364        | 56.0  | 56   | 0.6155          | 0.625    |
| 0.5364        | 57.0  | 57   | 0.6149          | 0.625    |
| 0.5364        | 58.0  | 58   | 0.6142          | 0.625    |
| 0.5364        | 59.0  | 59   | 0.6137          | 0.625    |
| 0.489         | 60.0  | 60   | 0.6132          | 0.625    |
| 0.489         | 61.0  | 61   | 0.6126          | 0.625    |
| 0.489         | 62.0  | 62   | 0.6121          | 0.625    |
| 0.489         | 63.0  | 63   | 0.6116          | 0.625    |
| 0.489         | 64.0  | 64   | 0.6111          | 0.5938   |
| 0.489         | 65.0  | 65   | 0.6107          | 0.5938   |
| 0.489         | 66.0  | 66   | 0.6103          | 0.625    |
| 0.489         | 67.0  | 67   | 0.6098          | 0.625    |
| 0.489         | 68.0  | 68   | 0.6093          | 0.625    |
| 0.489         | 69.0  | 69   | 0.6088          | 0.625    |
| 0.4517        | 70.0  | 70   | 0.6086          | 0.625    |
| 0.4517        | 71.0  | 71   | 0.6080          | 0.625    |
| 0.4517        | 72.0  | 72   | 0.6068          | 0.625    |
| 0.4517        | 73.0  | 73   | 0.6052          | 0.625    |
| 0.4517        | 74.0  | 74   | 0.6035          | 0.625    |
| 0.4517        | 75.0  | 75   | 0.6014          | 0.625    |
| 0.4517        | 76.0  | 76   | 0.5993          | 0.625    |
| 0.4517        | 77.0  | 77   | 0.5974          | 0.625    |
| 0.4517        | 78.0  | 78   | 0.5951          | 0.6562   |
| 0.4517        | 79.0  | 79   | 0.5932          | 0.6875   |
| 0.4066        | 80.0  | 80   | 0.5912          | 0.6875   |
| 0.4066        | 81.0  | 81   | 0.5895          | 0.6875   |
| 0.4066        | 82.0  | 82   | 0.5880          | 0.6875   |
| 0.4066        | 83.0  | 83   | 0.5868          | 0.6875   |
| 0.4066        | 84.0  | 84   | 0.5856          | 0.7188   |
| 0.4066        | 85.0  | 85   | 0.5843          | 0.7188   |
| 0.4066        | 86.0  | 86   | 0.5829          | 0.7188   |
| 0.4066        | 87.0  | 87   | 0.5816          | 0.7188   |
| 0.4066        | 88.0  | 88   | 0.5803          | 0.7188   |
| 0.4066        | 89.0  | 89   | 0.5790          | 0.7188   |
| 0.3548        | 90.0  | 90   | 0.5778          | 0.7188   |
| 0.3548        | 91.0  | 91   | 0.5766          | 0.75     |
| 0.3548        | 92.0  | 92   | 0.5754          | 0.75     |
| 0.3548        | 93.0  | 93   | 0.5743          | 0.75     |
| 0.3548        | 94.0  | 94   | 0.5732          | 0.75     |
| 0.3548        | 95.0  | 95   | 0.5719          | 0.75     |
| 0.3548        | 96.0  | 96   | 0.5706          | 0.75     |
| 0.3548        | 97.0  | 97   | 0.5693          | 0.75     |
| 0.3548        | 98.0  | 98   | 0.5680          | 0.75     |
| 0.3548        | 99.0  | 99   | 0.5669          | 0.75     |
| 0.3182        | 100.0 | 100  | 0.5659          | 0.75     |
| 0.3182        | 101.0 | 101  | 0.5648          | 0.7812   |
| 0.3182        | 102.0 | 102  | 0.5636          | 0.7812   |
| 0.3182        | 103.0 | 103  | 0.5624          | 0.7812   |
| 0.3182        | 104.0 | 104  | 0.5612          | 0.7812   |
| 0.3182        | 105.0 | 105  | 0.5599          | 0.7812   |
| 0.3182        | 106.0 | 106  | 0.5584          | 0.7812   |
| 0.3182        | 107.0 | 107  | 0.5567          | 0.8125   |
| 0.3182        | 108.0 | 108  | 0.5548          | 0.8125   |
| 0.3182        | 109.0 | 109  | 0.5530          | 0.8125   |
| 0.2758        | 110.0 | 110  | 0.5513          | 0.8125   |
| 0.2758        | 111.0 | 111  | 0.5498          | 0.8125   |
| 0.2758        | 112.0 | 112  | 0.5483          | 0.8125   |
| 0.2758        | 113.0 | 113  | 0.5468          | 0.7812   |
| 0.2758        | 114.0 | 114  | 0.5452          | 0.7812   |
| 0.2758        | 115.0 | 115  | 0.5438          | 0.7812   |
| 0.2758        | 116.0 | 116  | 0.5429          | 0.7812   |
| 0.2758        | 117.0 | 117  | 0.5420          | 0.75     |
| 0.2758        | 118.0 | 118  | 0.5411          | 0.75     |
| 0.2758        | 119.0 | 119  | 0.5400          | 0.7188   |
| 0.2399        | 120.0 | 120  | 0.5390          | 0.7188   |
| 0.2399        | 121.0 | 121  | 0.5375          | 0.7188   |
| 0.2399        | 122.0 | 122  | 0.5356          | 0.75     |
| 0.2399        | 123.0 | 123  | 0.5340          | 0.75     |
| 0.2399        | 124.0 | 124  | 0.5322          | 0.75     |
| 0.2399        | 125.0 | 125  | 0.5303          | 0.7812   |
| 0.2399        | 126.0 | 126  | 0.5281          | 0.75     |
| 0.2399        | 127.0 | 127  | 0.5259          | 0.7812   |
| 0.2399        | 128.0 | 128  | 0.5240          | 0.7812   |
| 0.2399        | 129.0 | 129  | 0.5215          | 0.7812   |
| 0.2062        | 130.0 | 130  | 0.5191          | 0.75     |
| 0.2062        | 131.0 | 131  | 0.5167          | 0.75     |
| 0.2062        | 132.0 | 132  | 0.5143          | 0.75     |
| 0.2062        | 133.0 | 133  | 0.5121          | 0.75     |
| 0.2062        | 134.0 | 134  | 0.5102          | 0.75     |
| 0.2062        | 135.0 | 135  | 0.5085          | 0.7812   |
| 0.2062        | 136.0 | 136  | 0.5071          | 0.7812   |
| 0.2062        | 137.0 | 137  | 0.5059          | 0.7812   |
| 0.2062        | 138.0 | 138  | 0.5048          | 0.7812   |
| 0.2062        | 139.0 | 139  | 0.5035          | 0.7812   |
| 0.1688        | 140.0 | 140  | 0.5023          | 0.7812   |
| 0.1688        | 141.0 | 141  | 0.5011          | 0.7812   |
| 0.1688        | 142.0 | 142  | 0.5001          | 0.7812   |
| 0.1688        | 143.0 | 143  | 0.4991          | 0.7812   |
| 0.1688        | 144.0 | 144  | 0.4980          | 0.7812   |
| 0.1688        | 145.0 | 145  | 0.4970          | 0.7812   |
| 0.1688        | 146.0 | 146  | 0.4960          | 0.7812   |
| 0.1688        | 147.0 | 147  | 0.4950          | 0.7812   |
| 0.1688        | 148.0 | 148  | 0.4938          | 0.7812   |
| 0.1688        | 149.0 | 149  | 0.4926          | 0.7812   |
| 0.1364        | 150.0 | 150  | 0.4916          | 0.7812   |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3