simonycl commited on
Commit
fd6b9da
·
1 Parent(s): cf75b13

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +210 -0
README.md ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-large-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: bert-large-uncased-sst-2-16-13
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # bert-large-uncased-sst-2-16-13
17
+
18
+ This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.6280
21
+ - Accuracy: 0.7812
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 32
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 50
47
+ - num_epochs: 150
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
53
+ | No log | 1.0 | 1 | 0.7881 | 0.5 |
54
+ | No log | 2.0 | 2 | 0.7873 | 0.5 |
55
+ | No log | 3.0 | 3 | 0.7860 | 0.5 |
56
+ | No log | 4.0 | 4 | 0.7840 | 0.5 |
57
+ | No log | 5.0 | 5 | 0.7810 | 0.5 |
58
+ | No log | 6.0 | 6 | 0.7772 | 0.5 |
59
+ | No log | 7.0 | 7 | 0.7723 | 0.5 |
60
+ | No log | 8.0 | 8 | 0.7668 | 0.5 |
61
+ | No log | 9.0 | 9 | 0.7600 | 0.5 |
62
+ | 0.782 | 10.0 | 10 | 0.7522 | 0.5 |
63
+ | 0.782 | 11.0 | 11 | 0.7438 | 0.5 |
64
+ | 0.782 | 12.0 | 12 | 0.7344 | 0.5 |
65
+ | 0.782 | 13.0 | 13 | 0.7252 | 0.5 |
66
+ | 0.782 | 14.0 | 14 | 0.7148 | 0.5 |
67
+ | 0.782 | 15.0 | 15 | 0.7043 | 0.5 |
68
+ | 0.782 | 16.0 | 16 | 0.6943 | 0.5 |
69
+ | 0.782 | 17.0 | 17 | 0.6857 | 0.4688 |
70
+ | 0.782 | 18.0 | 18 | 0.6769 | 0.5 |
71
+ | 0.782 | 19.0 | 19 | 0.6674 | 0.5312 |
72
+ | 0.685 | 20.0 | 20 | 0.6591 | 0.5938 |
73
+ | 0.685 | 21.0 | 21 | 0.6526 | 0.625 |
74
+ | 0.685 | 22.0 | 22 | 0.6435 | 0.625 |
75
+ | 0.685 | 23.0 | 23 | 0.6347 | 0.5938 |
76
+ | 0.685 | 24.0 | 24 | 0.6278 | 0.625 |
77
+ | 0.685 | 25.0 | 25 | 0.6261 | 0.5938 |
78
+ | 0.685 | 26.0 | 26 | 0.6250 | 0.625 |
79
+ | 0.685 | 27.0 | 27 | 0.6247 | 0.625 |
80
+ | 0.685 | 28.0 | 28 | 0.6225 | 0.625 |
81
+ | 0.685 | 29.0 | 29 | 0.6159 | 0.6562 |
82
+ | 0.4699 | 30.0 | 30 | 0.6056 | 0.6562 |
83
+ | 0.4699 | 31.0 | 31 | 0.5906 | 0.6875 |
84
+ | 0.4699 | 32.0 | 32 | 0.5795 | 0.6875 |
85
+ | 0.4699 | 33.0 | 33 | 0.5844 | 0.7812 |
86
+ | 0.4699 | 34.0 | 34 | 0.5925 | 0.7188 |
87
+ | 0.4699 | 35.0 | 35 | 0.5942 | 0.7188 |
88
+ | 0.4699 | 36.0 | 36 | 0.5956 | 0.6875 |
89
+ | 0.4699 | 37.0 | 37 | 0.5921 | 0.6875 |
90
+ | 0.4699 | 38.0 | 38 | 0.5860 | 0.6875 |
91
+ | 0.4699 | 39.0 | 39 | 0.5844 | 0.6875 |
92
+ | 0.3039 | 40.0 | 40 | 0.5793 | 0.7188 |
93
+ | 0.3039 | 41.0 | 41 | 0.5738 | 0.75 |
94
+ | 0.3039 | 42.0 | 42 | 0.5734 | 0.75 |
95
+ | 0.3039 | 43.0 | 43 | 0.5744 | 0.75 |
96
+ | 0.3039 | 44.0 | 44 | 0.5782 | 0.6875 |
97
+ | 0.3039 | 45.0 | 45 | 0.5817 | 0.6875 |
98
+ | 0.3039 | 46.0 | 46 | 0.5858 | 0.6875 |
99
+ | 0.3039 | 47.0 | 47 | 0.5888 | 0.6875 |
100
+ | 0.3039 | 48.0 | 48 | 0.5836 | 0.6875 |
101
+ | 0.3039 | 49.0 | 49 | 0.5724 | 0.7188 |
102
+ | 0.1969 | 50.0 | 50 | 0.5572 | 0.7188 |
103
+ | 0.1969 | 51.0 | 51 | 0.5442 | 0.7812 |
104
+ | 0.1969 | 52.0 | 52 | 0.5347 | 0.7812 |
105
+ | 0.1969 | 53.0 | 53 | 0.5288 | 0.7812 |
106
+ | 0.1969 | 54.0 | 54 | 0.5284 | 0.75 |
107
+ | 0.1969 | 55.0 | 55 | 0.5307 | 0.7812 |
108
+ | 0.1969 | 56.0 | 56 | 0.5386 | 0.7812 |
109
+ | 0.1969 | 57.0 | 57 | 0.5475 | 0.75 |
110
+ | 0.1969 | 58.0 | 58 | 0.5535 | 0.75 |
111
+ | 0.1969 | 59.0 | 59 | 0.5550 | 0.7188 |
112
+ | 0.1348 | 60.0 | 60 | 0.5533 | 0.7188 |
113
+ | 0.1348 | 61.0 | 61 | 0.5412 | 0.7812 |
114
+ | 0.1348 | 62.0 | 62 | 0.5322 | 0.7812 |
115
+ | 0.1348 | 63.0 | 63 | 0.5256 | 0.8125 |
116
+ | 0.1348 | 64.0 | 64 | 0.5189 | 0.8125 |
117
+ | 0.1348 | 65.0 | 65 | 0.5148 | 0.8125 |
118
+ | 0.1348 | 66.0 | 66 | 0.5154 | 0.7812 |
119
+ | 0.1348 | 67.0 | 67 | 0.5162 | 0.75 |
120
+ | 0.1348 | 68.0 | 68 | 0.5202 | 0.75 |
121
+ | 0.1348 | 69.0 | 69 | 0.5255 | 0.75 |
122
+ | 0.0823 | 70.0 | 70 | 0.5330 | 0.75 |
123
+ | 0.0823 | 71.0 | 71 | 0.5367 | 0.75 |
124
+ | 0.0823 | 72.0 | 72 | 0.5413 | 0.75 |
125
+ | 0.0823 | 73.0 | 73 | 0.5434 | 0.75 |
126
+ | 0.0823 | 74.0 | 74 | 0.5415 | 0.75 |
127
+ | 0.0823 | 75.0 | 75 | 0.5395 | 0.75 |
128
+ | 0.0823 | 76.0 | 76 | 0.5394 | 0.75 |
129
+ | 0.0823 | 77.0 | 77 | 0.5380 | 0.75 |
130
+ | 0.0823 | 78.0 | 78 | 0.5379 | 0.75 |
131
+ | 0.0823 | 79.0 | 79 | 0.5396 | 0.75 |
132
+ | 0.0519 | 80.0 | 80 | 0.5426 | 0.75 |
133
+ | 0.0519 | 81.0 | 81 | 0.5426 | 0.75 |
134
+ | 0.0519 | 82.0 | 82 | 0.5419 | 0.75 |
135
+ | 0.0519 | 83.0 | 83 | 0.5446 | 0.75 |
136
+ | 0.0519 | 84.0 | 84 | 0.5467 | 0.75 |
137
+ | 0.0519 | 85.0 | 85 | 0.5487 | 0.75 |
138
+ | 0.0519 | 86.0 | 86 | 0.5522 | 0.75 |
139
+ | 0.0519 | 87.0 | 87 | 0.5566 | 0.75 |
140
+ | 0.0519 | 88.0 | 88 | 0.5614 | 0.75 |
141
+ | 0.0519 | 89.0 | 89 | 0.5672 | 0.75 |
142
+ | 0.0382 | 90.0 | 90 | 0.5713 | 0.75 |
143
+ | 0.0382 | 91.0 | 91 | 0.5744 | 0.75 |
144
+ | 0.0382 | 92.0 | 92 | 0.5773 | 0.75 |
145
+ | 0.0382 | 93.0 | 93 | 0.5799 | 0.75 |
146
+ | 0.0382 | 94.0 | 94 | 0.5806 | 0.75 |
147
+ | 0.0382 | 95.0 | 95 | 0.5777 | 0.75 |
148
+ | 0.0382 | 96.0 | 96 | 0.5761 | 0.75 |
149
+ | 0.0382 | 97.0 | 97 | 0.5746 | 0.75 |
150
+ | 0.0382 | 98.0 | 98 | 0.5710 | 0.7812 |
151
+ | 0.0382 | 99.0 | 99 | 0.5697 | 0.7812 |
152
+ | 0.0266 | 100.0 | 100 | 0.5676 | 0.7812 |
153
+ | 0.0266 | 101.0 | 101 | 0.5650 | 0.7812 |
154
+ | 0.0266 | 102.0 | 102 | 0.5637 | 0.7812 |
155
+ | 0.0266 | 103.0 | 103 | 0.5623 | 0.7812 |
156
+ | 0.0266 | 104.0 | 104 | 0.5631 | 0.7812 |
157
+ | 0.0266 | 105.0 | 105 | 0.5633 | 0.7812 |
158
+ | 0.0266 | 106.0 | 106 | 0.5635 | 0.7812 |
159
+ | 0.0266 | 107.0 | 107 | 0.5638 | 0.8125 |
160
+ | 0.0266 | 108.0 | 108 | 0.5646 | 0.7812 |
161
+ | 0.0266 | 109.0 | 109 | 0.5662 | 0.7812 |
162
+ | 0.0205 | 110.0 | 110 | 0.5694 | 0.7812 |
163
+ | 0.0205 | 111.0 | 111 | 0.5737 | 0.7812 |
164
+ | 0.0205 | 112.0 | 112 | 0.5797 | 0.7812 |
165
+ | 0.0205 | 113.0 | 113 | 0.5851 | 0.7812 |
166
+ | 0.0205 | 114.0 | 114 | 0.5923 | 0.7812 |
167
+ | 0.0205 | 115.0 | 115 | 0.6008 | 0.7812 |
168
+ | 0.0205 | 116.0 | 116 | 0.6091 | 0.7812 |
169
+ | 0.0205 | 117.0 | 117 | 0.6162 | 0.75 |
170
+ | 0.0205 | 118.0 | 118 | 0.6201 | 0.75 |
171
+ | 0.0205 | 119.0 | 119 | 0.6233 | 0.75 |
172
+ | 0.0168 | 120.0 | 120 | 0.6255 | 0.75 |
173
+ | 0.0168 | 121.0 | 121 | 0.6274 | 0.75 |
174
+ | 0.0168 | 122.0 | 122 | 0.6293 | 0.75 |
175
+ | 0.0168 | 123.0 | 123 | 0.6265 | 0.75 |
176
+ | 0.0168 | 124.0 | 124 | 0.6245 | 0.75 |
177
+ | 0.0168 | 125.0 | 125 | 0.6239 | 0.75 |
178
+ | 0.0168 | 126.0 | 126 | 0.6232 | 0.75 |
179
+ | 0.0168 | 127.0 | 127 | 0.6221 | 0.7812 |
180
+ | 0.0168 | 128.0 | 128 | 0.6216 | 0.7812 |
181
+ | 0.0168 | 129.0 | 129 | 0.6213 | 0.7812 |
182
+ | 0.0139 | 130.0 | 130 | 0.6214 | 0.7812 |
183
+ | 0.0139 | 131.0 | 131 | 0.6212 | 0.7812 |
184
+ | 0.0139 | 132.0 | 132 | 0.6218 | 0.7812 |
185
+ | 0.0139 | 133.0 | 133 | 0.6234 | 0.7812 |
186
+ | 0.0139 | 134.0 | 134 | 0.6248 | 0.7812 |
187
+ | 0.0139 | 135.0 | 135 | 0.6259 | 0.7812 |
188
+ | 0.0139 | 136.0 | 136 | 0.6269 | 0.7812 |
189
+ | 0.0139 | 137.0 | 137 | 0.6275 | 0.7812 |
190
+ | 0.0139 | 138.0 | 138 | 0.6277 | 0.7812 |
191
+ | 0.0139 | 139.0 | 139 | 0.6280 | 0.7812 |
192
+ | 0.0126 | 140.0 | 140 | 0.6281 | 0.7812 |
193
+ | 0.0126 | 141.0 | 141 | 0.6283 | 0.7812 |
194
+ | 0.0126 | 142.0 | 142 | 0.6281 | 0.7812 |
195
+ | 0.0126 | 143.0 | 143 | 0.6279 | 0.7812 |
196
+ | 0.0126 | 144.0 | 144 | 0.6279 | 0.7812 |
197
+ | 0.0126 | 145.0 | 145 | 0.6278 | 0.7812 |
198
+ | 0.0126 | 146.0 | 146 | 0.6278 | 0.7812 |
199
+ | 0.0126 | 147.0 | 147 | 0.6279 | 0.7812 |
200
+ | 0.0126 | 148.0 | 148 | 0.6279 | 0.7812 |
201
+ | 0.0126 | 149.0 | 149 | 0.6279 | 0.7812 |
202
+ | 0.0121 | 150.0 | 150 | 0.6280 | 0.7812 |
203
+
204
+
205
+ ### Framework versions
206
+
207
+ - Transformers 4.32.0.dev0
208
+ - Pytorch 2.0.1+cu118
209
+ - Datasets 2.4.0
210
+ - Tokenizers 0.13.3