--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-sst-2-32-13-30 results: [] --- # bert-base-uncased-sst-2-32-13-30 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6080 - Accuracy: 0.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.7378 | 0.4844 | | No log | 2.0 | 4 | 0.7276 | 0.4844 | | No log | 3.0 | 6 | 0.7104 | 0.4844 | | No log | 4.0 | 8 | 0.6924 | 0.5469 | | 0.7068 | 5.0 | 10 | 0.6837 | 0.5625 | | 0.7068 | 6.0 | 12 | 0.6782 | 0.5938 | | 0.7068 | 7.0 | 14 | 0.6755 | 0.5781 | | 0.7068 | 8.0 | 16 | 0.6701 | 0.625 | | 0.7068 | 9.0 | 18 | 0.6644 | 0.625 | | 0.5803 | 10.0 | 20 | 0.6574 | 0.6406 | | 0.5803 | 11.0 | 22 | 0.6505 | 0.625 | | 0.5803 | 12.0 | 24 | 0.6436 | 0.6875 | | 0.5803 | 13.0 | 26 | 0.6370 | 0.6562 | | 0.5803 | 14.0 | 28 | 0.6316 | 0.6719 | | 0.4412 | 15.0 | 30 | 0.6267 | 0.6875 | | 0.4412 | 16.0 | 32 | 0.6232 | 0.6719 | | 0.4412 | 17.0 | 34 | 0.6205 | 0.6875 | | 0.4412 | 18.0 | 36 | 0.6175 | 0.6875 | | 0.4412 | 19.0 | 38 | 0.6141 | 0.6875 | | 0.3438 | 20.0 | 40 | 0.6113 | 0.6875 | | 0.3438 | 21.0 | 42 | 0.6099 | 0.6875 | | 0.3438 | 22.0 | 44 | 0.6109 | 0.6875 | | 0.3438 | 23.0 | 46 | 0.6112 | 0.6875 | | 0.3438 | 24.0 | 48 | 0.6107 | 0.6875 | | 0.2832 | 25.0 | 50 | 0.6097 | 0.6875 | | 0.2832 | 26.0 | 52 | 0.6088 | 0.6875 | | 0.2832 | 27.0 | 54 | 0.6082 | 0.6875 | | 0.2832 | 28.0 | 56 | 0.6080 | 0.6875 | | 0.2832 | 29.0 | 58 | 0.6080 | 0.6875 | | 0.2532 | 30.0 | 60 | 0.6080 | 0.6875 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3