File size: 3,222 Bytes
f080ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4988b60
 
f080ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4988b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f080ac9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-sst-2-32-13-30
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-sst-2-32-13-30

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5572
- Accuracy: 0.75

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 2    | 0.6997          | 0.4375   |
| No log        | 2.0   | 4    | 0.6973          | 0.4375   |
| No log        | 3.0   | 6    | 0.6912          | 0.5781   |
| No log        | 4.0   | 8    | 0.6876          | 0.5      |
| 0.6783        | 5.0   | 10   | 0.6843          | 0.5312   |
| 0.6783        | 6.0   | 12   | 0.6800          | 0.5781   |
| 0.6783        | 7.0   | 14   | 0.6738          | 0.5938   |
| 0.6783        | 8.0   | 16   | 0.6662          | 0.6562   |
| 0.6783        | 9.0   | 18   | 0.6573          | 0.6562   |
| 0.5945        | 10.0  | 20   | 0.6496          | 0.7031   |
| 0.5945        | 11.0  | 22   | 0.6427          | 0.7188   |
| 0.5945        | 12.0  | 24   | 0.6343          | 0.7188   |
| 0.5945        | 13.0  | 26   | 0.6270          | 0.7031   |
| 0.5945        | 14.0  | 28   | 0.6218          | 0.6875   |
| 0.4805        | 15.0  | 30   | 0.6166          | 0.6875   |
| 0.4805        | 16.0  | 32   | 0.6110          | 0.7188   |
| 0.4805        | 17.0  | 34   | 0.6046          | 0.7344   |
| 0.4805        | 18.0  | 36   | 0.5972          | 0.7344   |
| 0.4805        | 19.0  | 38   | 0.5895          | 0.7344   |
| 0.3522        | 20.0  | 40   | 0.5823          | 0.75     |
| 0.3522        | 21.0  | 42   | 0.5767          | 0.7344   |
| 0.3522        | 22.0  | 44   | 0.5708          | 0.7344   |
| 0.3522        | 23.0  | 46   | 0.5667          | 0.7344   |
| 0.3522        | 24.0  | 48   | 0.5637          | 0.7344   |
| 0.2697        | 25.0  | 50   | 0.5616          | 0.7344   |
| 0.2697        | 26.0  | 52   | 0.5603          | 0.7344   |
| 0.2697        | 27.0  | 54   | 0.5592          | 0.7344   |
| 0.2697        | 28.0  | 56   | 0.5582          | 0.75     |
| 0.2697        | 29.0  | 58   | 0.5574          | 0.75     |
| 0.2363        | 30.0  | 60   | 0.5572          | 0.75     |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3