File size: 3,222 Bytes
f080ac9 4988b60 f080ac9 4988b60 f080ac9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-sst-2-32-13-30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-sst-2-32-13-30
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5572
- Accuracy: 0.75
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 2 | 0.6997 | 0.4375 |
| No log | 2.0 | 4 | 0.6973 | 0.4375 |
| No log | 3.0 | 6 | 0.6912 | 0.5781 |
| No log | 4.0 | 8 | 0.6876 | 0.5 |
| 0.6783 | 5.0 | 10 | 0.6843 | 0.5312 |
| 0.6783 | 6.0 | 12 | 0.6800 | 0.5781 |
| 0.6783 | 7.0 | 14 | 0.6738 | 0.5938 |
| 0.6783 | 8.0 | 16 | 0.6662 | 0.6562 |
| 0.6783 | 9.0 | 18 | 0.6573 | 0.6562 |
| 0.5945 | 10.0 | 20 | 0.6496 | 0.7031 |
| 0.5945 | 11.0 | 22 | 0.6427 | 0.7188 |
| 0.5945 | 12.0 | 24 | 0.6343 | 0.7188 |
| 0.5945 | 13.0 | 26 | 0.6270 | 0.7031 |
| 0.5945 | 14.0 | 28 | 0.6218 | 0.6875 |
| 0.4805 | 15.0 | 30 | 0.6166 | 0.6875 |
| 0.4805 | 16.0 | 32 | 0.6110 | 0.7188 |
| 0.4805 | 17.0 | 34 | 0.6046 | 0.7344 |
| 0.4805 | 18.0 | 36 | 0.5972 | 0.7344 |
| 0.4805 | 19.0 | 38 | 0.5895 | 0.7344 |
| 0.3522 | 20.0 | 40 | 0.5823 | 0.75 |
| 0.3522 | 21.0 | 42 | 0.5767 | 0.7344 |
| 0.3522 | 22.0 | 44 | 0.5708 | 0.7344 |
| 0.3522 | 23.0 | 46 | 0.5667 | 0.7344 |
| 0.3522 | 24.0 | 48 | 0.5637 | 0.7344 |
| 0.2697 | 25.0 | 50 | 0.5616 | 0.7344 |
| 0.2697 | 26.0 | 52 | 0.5603 | 0.7344 |
| 0.2697 | 27.0 | 54 | 0.5592 | 0.7344 |
| 0.2697 | 28.0 | 56 | 0.5582 | 0.75 |
| 0.2697 | 29.0 | 58 | 0.5574 | 0.75 |
| 0.2363 | 30.0 | 60 | 0.5572 | 0.75 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3
|