File size: 10,661 Bytes
0351e3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-sst-2-32-100
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-uncased-sst-2-32-100

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4379
- Accuracy: 0.9219

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 2    | 0.5385          | 0.9219   |
| No log        | 2.0   | 4    | 0.5392          | 0.9219   |
| No log        | 3.0   | 6    | 0.5398          | 0.9219   |
| No log        | 4.0   | 8    | 0.5410          | 0.9219   |
| 0.733         | 5.0   | 10   | 0.5426          | 0.9219   |
| 0.733         | 6.0   | 12   | 0.5443          | 0.9062   |
| 0.733         | 7.0   | 14   | 0.5461          | 0.9062   |
| 0.733         | 8.0   | 16   | 0.5481          | 0.9062   |
| 0.733         | 9.0   | 18   | 0.5487          | 0.9062   |
| 0.6383        | 10.0  | 20   | 0.5495          | 0.9062   |
| 0.6383        | 11.0  | 22   | 0.5546          | 0.8906   |
| 0.6383        | 12.0  | 24   | 0.5643          | 0.9062   |
| 0.6383        | 13.0  | 26   | 0.5742          | 0.9062   |
| 0.6383        | 14.0  | 28   | 0.5875          | 0.9062   |
| 0.4993        | 15.0  | 30   | 0.5982          | 0.9062   |
| 0.4993        | 16.0  | 32   | 0.6100          | 0.9062   |
| 0.4993        | 17.0  | 34   | 0.6222          | 0.9062   |
| 0.4993        | 18.0  | 36   | 0.6263          | 0.9062   |
| 0.4993        | 19.0  | 38   | 0.6305          | 0.9062   |
| 0.4891        | 20.0  | 40   | 0.6335          | 0.9062   |
| 0.4891        | 21.0  | 42   | 0.6368          | 0.9062   |
| 0.4891        | 22.0  | 44   | 0.6351          | 0.9062   |
| 0.4891        | 23.0  | 46   | 0.6301          | 0.9062   |
| 0.4891        | 24.0  | 48   | 0.6212          | 0.9062   |
| 0.377         | 25.0  | 50   | 0.6100          | 0.9062   |
| 0.377         | 26.0  | 52   | 0.5999          | 0.9062   |
| 0.377         | 27.0  | 54   | 0.5852          | 0.9062   |
| 0.377         | 28.0  | 56   | 0.5737          | 0.9062   |
| 0.377         | 29.0  | 58   | 0.5606          | 0.9219   |
| 0.3369        | 30.0  | 60   | 0.5466          | 0.9062   |
| 0.3369        | 31.0  | 62   | 0.5319          | 0.9062   |
| 0.3369        | 32.0  | 64   | 0.5205          | 0.9062   |
| 0.3369        | 33.0  | 66   | 0.5074          | 0.9219   |
| 0.3369        | 34.0  | 68   | 0.5025          | 0.9219   |
| 0.19          | 35.0  | 70   | 0.4984          | 0.9219   |
| 0.19          | 36.0  | 72   | 0.4934          | 0.9219   |
| 0.19          | 37.0  | 74   | 0.4927          | 0.9375   |
| 0.19          | 38.0  | 76   | 0.4955          | 0.9375   |
| 0.19          | 39.0  | 78   | 0.4968          | 0.9375   |
| 0.0507        | 40.0  | 80   | 0.4956          | 0.9375   |
| 0.0507        | 41.0  | 82   | 0.4882          | 0.9375   |
| 0.0507        | 42.0  | 84   | 0.4784          | 0.9375   |
| 0.0507        | 43.0  | 86   | 0.4710          | 0.9219   |
| 0.0507        | 44.0  | 88   | 0.4650          | 0.9219   |
| 0.0102        | 45.0  | 90   | 0.4578          | 0.9219   |
| 0.0102        | 46.0  | 92   | 0.4540          | 0.9219   |
| 0.0102        | 47.0  | 94   | 0.4566          | 0.9062   |
| 0.0102        | 48.0  | 96   | 0.4682          | 0.9062   |
| 0.0102        | 49.0  | 98   | 0.4831          | 0.9219   |
| 0.0026        | 50.0  | 100  | 0.4922          | 0.9219   |
| 0.0026        | 51.0  | 102  | 0.4985          | 0.9219   |
| 0.0026        | 52.0  | 104  | 0.5029          | 0.9219   |
| 0.0026        | 53.0  | 106  | 0.5062          | 0.9219   |
| 0.0026        | 54.0  | 108  | 0.5087          | 0.9219   |
| 0.001         | 55.0  | 110  | 0.5100          | 0.9219   |
| 0.001         | 56.0  | 112  | 0.5110          | 0.9219   |
| 0.001         | 57.0  | 114  | 0.5112          | 0.9219   |
| 0.001         | 58.0  | 116  | 0.5112          | 0.9219   |
| 0.001         | 59.0  | 118  | 0.5110          | 0.9219   |
| 0.0004        | 60.0  | 120  | 0.5087          | 0.9219   |
| 0.0004        | 61.0  | 122  | 0.5028          | 0.9219   |
| 0.0004        | 62.0  | 124  | 0.4965          | 0.9219   |
| 0.0004        | 63.0  | 126  | 0.4903          | 0.9219   |
| 0.0004        | 64.0  | 128  | 0.4848          | 0.9219   |
| 0.0003        | 65.0  | 130  | 0.4802          | 0.9219   |
| 0.0003        | 66.0  | 132  | 0.4767          | 0.9219   |
| 0.0003        | 67.0  | 134  | 0.4739          | 0.9219   |
| 0.0003        | 68.0  | 136  | 0.4719          | 0.9219   |
| 0.0003        | 69.0  | 138  | 0.4707          | 0.9219   |
| 0.0024        | 70.0  | 140  | 0.4600          | 0.9219   |
| 0.0024        | 71.0  | 142  | 0.4439          | 0.9219   |
| 0.0024        | 72.0  | 144  | 0.4336          | 0.9062   |
| 0.0024        | 73.0  | 146  | 0.4283          | 0.9062   |
| 0.0024        | 74.0  | 148  | 0.4253          | 0.9219   |
| 0.0002        | 75.0  | 150  | 0.4237          | 0.9219   |
| 0.0002        | 76.0  | 152  | 0.4232          | 0.9375   |
| 0.0002        | 77.0  | 154  | 0.4230          | 0.9375   |
| 0.0002        | 78.0  | 156  | 0.4229          | 0.9375   |
| 0.0002        | 79.0  | 158  | 0.4228          | 0.9375   |
| 0.0002        | 80.0  | 160  | 0.4228          | 0.9375   |
| 0.0002        | 81.0  | 162  | 0.4225          | 0.9375   |
| 0.0002        | 82.0  | 164  | 0.4237          | 0.9062   |
| 0.0002        | 83.0  | 166  | 0.4384          | 0.9219   |
| 0.0002        | 84.0  | 168  | 0.4565          | 0.9219   |
| 0.0004        | 85.0  | 170  | 0.4717          | 0.9219   |
| 0.0004        | 86.0  | 172  | 0.4813          | 0.9219   |
| 0.0004        | 87.0  | 174  | 0.4858          | 0.9219   |
| 0.0004        | 88.0  | 176  | 0.4885          | 0.9219   |
| 0.0004        | 89.0  | 178  | 0.4897          | 0.9219   |
| 0.0002        | 90.0  | 180  | 0.4904          | 0.9219   |
| 0.0002        | 91.0  | 182  | 0.4865          | 0.9219   |
| 0.0002        | 92.0  | 184  | 0.4732          | 0.9219   |
| 0.0002        | 93.0  | 186  | 0.4557          | 0.9219   |
| 0.0002        | 94.0  | 188  | 0.4388          | 0.9219   |
| 0.0053        | 95.0  | 190  | 0.4254          | 0.9219   |
| 0.0053        | 96.0  | 192  | 0.4171          | 0.9219   |
| 0.0053        | 97.0  | 194  | 0.4132          | 0.9375   |
| 0.0053        | 98.0  | 196  | 0.4118          | 0.9375   |
| 0.0053        | 99.0  | 198  | 0.4115          | 0.9219   |
| 0.0002        | 100.0 | 200  | 0.4118          | 0.9219   |
| 0.0002        | 101.0 | 202  | 0.4122          | 0.9219   |
| 0.0002        | 102.0 | 204  | 0.4125          | 0.9219   |
| 0.0002        | 103.0 | 206  | 0.4128          | 0.9219   |
| 0.0002        | 104.0 | 208  | 0.4131          | 0.9219   |
| 0.0002        | 105.0 | 210  | 0.4133          | 0.9219   |
| 0.0002        | 106.0 | 212  | 0.4134          | 0.9219   |
| 0.0002        | 107.0 | 214  | 0.4140          | 0.9219   |
| 0.0002        | 108.0 | 216  | 0.4149          | 0.9219   |
| 0.0002        | 109.0 | 218  | 0.4158          | 0.9219   |
| 0.0002        | 110.0 | 220  | 0.4167          | 0.9219   |
| 0.0002        | 111.0 | 222  | 0.4175          | 0.9219   |
| 0.0002        | 112.0 | 224  | 0.4183          | 0.9375   |
| 0.0002        | 113.0 | 226  | 0.4190          | 0.9375   |
| 0.0002        | 114.0 | 228  | 0.4197          | 0.9375   |
| 0.0001        | 115.0 | 230  | 0.4203          | 0.9375   |
| 0.0001        | 116.0 | 232  | 0.4208          | 0.9375   |
| 0.0001        | 117.0 | 234  | 0.4218          | 0.9219   |
| 0.0001        | 118.0 | 236  | 0.4228          | 0.9219   |
| 0.0001        | 119.0 | 238  | 0.4237          | 0.9219   |
| 0.0002        | 120.0 | 240  | 0.4244          | 0.9219   |
| 0.0002        | 121.0 | 242  | 0.4251          | 0.9219   |
| 0.0002        | 122.0 | 244  | 0.4257          | 0.9219   |
| 0.0002        | 123.0 | 246  | 0.4263          | 0.9219   |
| 0.0002        | 124.0 | 248  | 0.4269          | 0.9219   |
| 0.0002        | 125.0 | 250  | 0.4273          | 0.9219   |
| 0.0002        | 126.0 | 252  | 0.4277          | 0.9219   |
| 0.0002        | 127.0 | 254  | 0.4280          | 0.9219   |
| 0.0002        | 128.0 | 256  | 0.4284          | 0.9219   |
| 0.0002        | 129.0 | 258  | 0.4287          | 0.9219   |
| 0.0008        | 130.0 | 260  | 0.4330          | 0.9219   |
| 0.0008        | 131.0 | 262  | 0.4554          | 0.9219   |
| 0.0008        | 132.0 | 264  | 0.4714          | 0.9219   |
| 0.0008        | 133.0 | 266  | 0.4845          | 0.9375   |
| 0.0008        | 134.0 | 268  | 0.5000          | 0.9219   |
| 0.0001        | 135.0 | 270  | 0.5167          | 0.9219   |
| 0.0001        | 136.0 | 272  | 0.5308          | 0.9062   |
| 0.0001        | 137.0 | 274  | 0.5417          | 0.9062   |
| 0.0001        | 138.0 | 276  | 0.5480          | 0.9062   |
| 0.0001        | 139.0 | 278  | 0.5529          | 0.9062   |
| 0.0001        | 140.0 | 280  | 0.5566          | 0.9062   |
| 0.0001        | 141.0 | 282  | 0.5570          | 0.9062   |
| 0.0001        | 142.0 | 284  | 0.5565          | 0.9062   |
| 0.0001        | 143.0 | 286  | 0.5555          | 0.9062   |
| 0.0001        | 144.0 | 288  | 0.5544          | 0.9062   |
| 0.0001        | 145.0 | 290  | 0.5511          | 0.9062   |
| 0.0001        | 146.0 | 292  | 0.5096          | 0.9219   |
| 0.0001        | 147.0 | 294  | 0.4811          | 0.9375   |
| 0.0001        | 148.0 | 296  | 0.4624          | 0.9219   |
| 0.0001        | 149.0 | 298  | 0.4488          | 0.9219   |
| 0.0002        | 150.0 | 300  | 0.4379          | 0.9219   |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3