File size: 2,238 Bytes
698477f
 
bdc4e6b
 
698477f
bdc4e6b
698477f
 
bdc4e6b
698477f
 
 
 
 
bdc4e6b
698477f
bdc4e6b
698477f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4d2ba
698477f
 
 
 
 
 
 
1b4d2ba
 
 
 
698477f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: google/gemma-7b
datasets:
- silviasapora/dpo_7k_noisy_10
library_name: transformers
model_name: google/gemma-7b
tags:
- generated_from_trainer
- alignment-handbook
- trl
- orpo
licence: license
---

# Model Card for google/gemma-7b

This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co./google/gemma-7b) on the [['silviasapora/dpo_7k_noisy_10']](https://huggingface.co./datasets/['silviasapora/dpo_7k_noisy_10']) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="silviasapora/gemma-7b-borpo-noisy-5e-5-norm", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/silvias/huggingface/runs/fgpoejgs) 


This model was trained with ORPO, a method introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co./papers/2403.07691).

### Framework versions

- TRL: 0.13.0
- Transformers: 4.48.1
- Pytorch: 2.5.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citations

Cite ORPO as:

```bibtex
@article{hong2024orpo,
    title        = {{ORPO: Monolithic Preference Optimization without Reference Model}},
    author       = {Jiwoo Hong and Noah Lee and James Thorne},
    year         = 2024,
    eprint       = {arXiv:2403.07691}
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```