--- language: - en pipeline_tag: zero-shot-classification tags: - smol datasets: - glue - super_glue - anli - metaeval/babi_nli - sick - stanfordnlp/snli - scitail - hans - alisawuffles/WANLI - metaeval/recast - sileod/probability_words_nli - joey234/nan-nli - pietrolesci/nli_fever - pietrolesci/breaking_nli - pietrolesci/conj_nli - pietrolesci/fracas - pietrolesci/dialogue_nli - pietrolesci/mpe - pietrolesci/dnc - pietrolesci/recast_white - pietrolesci/joci - pietrolesci/robust_nli - pietrolesci/robust_nli_is_sd - pietrolesci/robust_nli_li_ts - pietrolesci/gen_debiased_nli - pietrolesci/add_one_rte - metaeval/imppres - hlgd - paws - medical_questions_pairs - conll2003 - Anthropic/model-written-evals - truthful_qa - nightingal3/fig-qa - tasksource/bigbench - blimp - cos_e - cosmos_qa - dream - openbookqa - qasc - quartz - quail - head_qa - sciq - social_i_qa - wiki_hop - wiqa - piqa - hellaswag - pkavumba/balanced-copa - 12ml/e-CARE - art - tasksource/mmlu - winogrande - codah - ai2_arc - definite_pronoun_resolution - swag - math_qa - metaeval/utilitarianism - mteb/amazon_counterfactual - SetFit/insincere-questions - SetFit/toxic_conversations - turingbench/TuringBench - trec - tals/vitaminc - hope_edi - strombergnlp/rumoureval_2019 - ethos - tweet_eval - discovery - pragmeval - silicone - lex_glue - papluca/language-identification - imdb - rotten_tomatoes - ag_news - yelp_review_full - financial_phrasebank - poem_sentiment - dbpedia_14 - amazon_polarity - app_reviews - hate_speech18 - sms_spam - humicroedit - snips_built_in_intents - hate_speech_offensive - yahoo_answers_topics - pacovaldez/stackoverflow-questions - zapsdcn/hyperpartisan_news - zapsdcn/sciie - zapsdcn/citation_intent - go_emotions - allenai/scicite - liar - relbert/lexical_relation_classification - tasksource/crowdflower - metaeval/ethics - emo - google_wellformed_query - tweets_hate_speech_detection - has_part - wnut_17 - ncbi_disease - acronym_identification - jnlpba - SpeedOfMagic/ontonotes_english - blog_authorship_corpus - launch/open_question_type - health_fact - commonsense_qa - mc_taco - ade_corpus_v2 - prajjwal1/discosense - circa - PiC/phrase_similarity - copenlu/scientific-exaggeration-detection - quarel - mwong/fever-evidence-related - numer_sense - dynabench/dynasent - raquiba/Sarcasm_News_Headline - sem_eval_2010_task_8 - demo-org/auditor_review - medmcqa - RuyuanWan/Dynasent_Disagreement - RuyuanWan/Politeness_Disagreement - RuyuanWan/SBIC_Disagreement - RuyuanWan/SChem_Disagreement - RuyuanWan/Dilemmas_Disagreement - lucasmccabe/logiqa - wiki_qa - metaeval/cycic_classification - metaeval/cycic_multiplechoice - metaeval/sts-companion - metaeval/commonsense_qa_2.0 - metaeval/lingnli - metaeval/monotonicity-entailment - metaeval/arct - metaeval/scinli - metaeval/naturallogic - onestop_qa - demelin/moral_stories - corypaik/prost - aps/dynahate - metaeval/syntactic-augmentation-nli - metaeval/autotnli - lasha-nlp/CONDAQA - openai/webgpt_comparisons - Dahoas/synthetic-instruct-gptj-pairwise - metaeval/scruples - metaeval/wouldyourather - metaeval/defeasible-nli - metaeval/help-nli - metaeval/nli-veridicality-transitivity - metaeval/natural-language-satisfiability - metaeval/lonli - metaeval/dadc-limit-nli - ColumbiaNLP/FLUTE - metaeval/strategy-qa - openai/summarize_from_feedback - tasksource/folio - metaeval/tomi-nli - metaeval/avicenna - stanfordnlp/SHP - GBaker/MedQA-USMLE-4-options-hf - sileod/wikimedqa - declare-lab/cicero - amydeng2000/CREAK - metaeval/mutual - inverse-scaling/NeQA - inverse-scaling/quote-repetition - inverse-scaling/redefine-math - metaeval/puzzte - metaeval/implicatures - race - metaeval/race-c - metaeval/spartqa-yn - metaeval/spartqa-mchoice - metaeval/temporal-nli - riddle_sense - metaeval/clcd-english - maximedb/twentyquestions - metaeval/reclor - metaeval/counterfactually-augmented-imdb - metaeval/counterfactually-augmented-snli - metaeval/cnli - metaeval/boolq-natural-perturbations - metaeval/acceptability-prediction - metaeval/equate - metaeval/ScienceQA_text_only - Jiangjie/ekar_english - metaeval/implicit-hate-stg1 - metaeval/chaos-mnli-ambiguity - IlyaGusev/headline_cause - metaeval/logiqa-2.0-nli - tasksource/oasst2_dense_flat - sileod/mindgames - universal_dependencies - metaeval/ambient - metaeval/path-naturalness-prediction - civil_comments - AndyChiang/cloth - AndyChiang/dgen - tasksource/I2D2 - webis/args_me - webis/Touche23-ValueEval - tasksource/starcon - PolyAI/banking77 - tasksource/ConTRoL-nli - tasksource/tracie - tasksource/sherliic - tasksource/sen-making - tasksource/winowhy - mediabiasgroup/mbib-base - tasksource/robustLR - CLUTRR/v1 - tasksource/logical-fallacy - tasksource/parade - tasksource/cladder - tasksource/subjectivity - tasksource/MOH - tasksource/VUAC - tasksource/TroFi - sharc_modified - tasksource/conceptrules_v2 - metaeval/disrpt - conll2000 - DFKI-SLT/few-nerd - nlpaueb/finer-139 - tasksource/zero-shot-label-nli - tasksource/com2sense - tasksource/scone - tasksource/winodict - tasksource/fool-me-twice - tasksource/monli - tasksource/corr2cause - lighteval/lsat_qa - tasksource/apt - zeroshot/twitter-financial-news-sentiment - tasksource/icl-symbol-tuning-instruct - tasksource/SpaceNLI - sihaochen/propsegment - HannahRoseKirk/HatemojiBuild - tasksource/regset - tasksource/esci - lmsys/chatbot_arena_conversations - neurae/dnd_style_intents - hitachi-nlp/FLD.v2 - tasksource/SDOH-NLI - allenai/scifact_entailment - tasksource/feasibilityQA - tasksource/simple_pair - tasksource/AdjectiveScaleProbe-nli - tasksource/resnli - tasksource/SpaRTUN - tasksource/ReSQ - tasksource/semantic_fragments_nli - MoritzLaurer/dataset_train_nli - tasksource/stepgame - tasksource/nlgraph - tasksource/oasst2_pairwise_rlhf_reward - tasksource/hh-rlhf - tasksource/ruletaker - qbao775/PARARULE-Plus - tasksource/proofwriter - tasksource/logical-entailment - tasksource/nope - tasksource/LogicNLI - kiddothe2b/contract-nli - AshtonIsNotHere/nli4ct_semeval2024 - tasksource/lsat-ar - tasksource/lsat-rc - AshtonIsNotHere/biosift-nli - tasksource/brainteasers - Anthropic/persuasion - erbacher/AmbigNQ-clarifying-question - tasksource/SIGA-nli --- `deberta-v3-xsmall` fine-tuned for 100k steps on the tasksource collection Model size: 22M backbone + 48M vocabulary parameters Refer to the this page for documentation :[https://huggingface.co./sileod/deberta-v3-base-tasksource-nli]