|
|
|
|
|
from typing import Dict, List, Any |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=None): |
|
|
|
|
|
model_id = 'sijieaaa/CodeModel-V1-3B-2024-02-07' |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
|
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
model_id |
|
) |
|
self.model.eval() |
|
|
|
|
|
|
|
|
|
|
|
|
|
a=1 |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
prompt = data["inputs"] |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = self.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) |
|
|
|
generated_ids = self.model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
response = [ |
|
{"role": "assistant", "content": response} |
|
] |
|
|
|
|
|
return response |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|