File size: 5,350 Bytes
31a6c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: facebook/mbart-large-cc25
tags:
- generated_from_trainer
model-index:
- name: nl+no_processing
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nl+no_processing

This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co./facebook/mbart-large-cc25) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6038
- Smatch Precision: 73.7
- Smatch Recall: 76.48
- Smatch Fscore: 75.06
- Smatch Unparsable: 0
- Percent Not Recoverable: 0.2323

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Smatch Precision | Smatch Recall | Smatch Fscore | Smatch Unparsable | Percent Not Recoverable |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:-------------:|:-----------------:|:-----------------------:|
| 0.8025        | 1.0   | 3477  | 1.3793          | 18.51            | 65.71         | 28.88         | 0                 | 0.0                     |
| 0.13          | 2.0   | 6954  | 0.9377          | 27.0             | 71.3          | 39.16         | 0                 | 0.1161                  |
| 0.0953        | 3.0   | 10431 | 0.7509          | 34.09            | 72.74         | 46.42         | 0                 | 0.1161                  |
| 0.1386        | 4.0   | 13908 | 0.8524          | 33.38            | 73.32         | 45.87         | 2                 | 0.0                     |
| 0.0974        | 5.0   | 17385 | 0.6957          | 41.69            | 73.92         | 53.31         | 0                 | 0.0                     |
| 0.0705        | 6.0   | 20862 | 0.6145          | 47.98            | 75.12         | 58.55         | 0                 | 0.0                     |
| 0.2265        | 7.0   | 24339 | 0.6439          | 47.06            | 75.53         | 57.99         | 0                 | 0.0                     |
| 0.0506        | 8.0   | 27817 | 0.5974          | 53.0             | 76.95         | 62.77         | 0                 | 0.0                     |
| 0.064         | 9.0   | 31294 | 0.6387          | 51.83            | 77.47         | 62.11         | 0                 | 0.0                     |
| 0.0112        | 10.0  | 34771 | 0.6066          | 54.82            | 76.98         | 64.03         | 0                 | 0.0                     |
| 0.047         | 11.0  | 38248 | 0.5970          | 60.36            | 77.04         | 67.69         | 0                 | 0.0                     |
| 0.0134        | 12.0  | 41725 | 0.5675          | 61.72            | 77.15         | 68.58         | 0                 | 0.0                     |
| 0.0656        | 13.0  | 45202 | 0.6210          | 62.8             | 76.92         | 69.15         | 0                 | 0.0581                  |
| 0.015         | 14.0  | 48679 | 0.6257          | 62.8             | 77.32         | 69.31         | 0                 | 0.0                     |
| 0.0134        | 15.0  | 52156 | 0.5635          | 66.7             | 77.34         | 71.63         | 0                 | 0.1161                  |
| 0.0265        | 16.0  | 55634 | 0.5839          | 67.61            | 76.76         | 71.89         | 0                 | 0.0581                  |
| 0.0219        | 17.0  | 59111 | 0.5894          | 68.66            | 77.43         | 72.78         | 0                 | 0.1161                  |
| 0.0008        | 18.0  | 62588 | 0.5981          | 68.44            | 77.57         | 72.72         | 0                 | 0.0                     |
| 0.0157        | 19.0  | 66065 | 0.6184          | 69.88            | 77.42         | 73.46         | 0                 | 0.0581                  |
| 0.0334        | 20.0  | 69542 | 0.6026          | 70.76            | 77.37         | 73.92         | 0                 | 0.2323                  |
| 0.0619        | 21.0  | 73019 | 0.6021          | 72.03            | 77.0          | 74.44         | 0                 | 0.1742                  |
| 0.0075        | 22.0  | 76496 | 0.6166          | 72.33            | 76.74         | 74.47         | 0                 | 0.0581                  |
| 0.0164        | 23.0  | 79973 | 0.6100          | 72.75            | 77.03         | 74.83         | 0                 | 0.2323                  |
| 0.0011        | 24.0  | 83451 | 0.6037          | 73.7             | 76.51         | 75.08         | 0                 | 0.2323                  |
| 0.0865        | 25.0  | 86925 | 0.6038          | 73.7             | 76.48         | 75.06         | 0                 | 0.2323                  |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3