--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-cassava3 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.8855140186915887 --- # vit-base-patch16-224-in21k-finetuned-cassava3 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3419 - Accuracy: 0.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5624 | 0.99 | 133 | 0.5866 | 0.8166 | | 0.4717 | 1.99 | 266 | 0.4245 | 0.8692 | | 0.4105 | 2.99 | 399 | 0.3708 | 0.8811 | | 0.3753 | 3.99 | 532 | 0.3646 | 0.8787 | | 0.2997 | 4.99 | 665 | 0.3655 | 0.8780 | | 0.3176 | 5.99 | 798 | 0.3545 | 0.8822 | | 0.2849 | 6.99 | 931 | 0.3441 | 0.8850 | | 0.2931 | 7.99 | 1064 | 0.3419 | 0.8855 | | 0.27 | 8.99 | 1197 | 0.3419 | 0.8848 | | 0.2927 | 9.99 | 1330 | 0.3403 | 0.8853 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1