--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-cassava results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.8705607476635514 --- # vit-base-patch16-224-in21k-finetuned-cassava This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3742 - Accuracy: 0.8706 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5628 | 1.0 | 150 | 0.5357 | 0.8308 | | 0.4398 | 2.0 | 300 | 0.4311 | 0.8598 | | 0.4022 | 3.0 | 450 | 0.3958 | 0.8668 | | 0.3855 | 4.0 | 600 | 0.4030 | 0.8598 | | 0.3659 | 5.0 | 750 | 0.4125 | 0.8617 | | 0.3393 | 6.0 | 900 | 0.3840 | 0.8673 | | 0.3022 | 7.0 | 1050 | 0.3775 | 0.8673 | | 0.2941 | 8.0 | 1200 | 0.3742 | 0.8706 | | 0.2903 | 9.0 | 1350 | 0.3809 | 0.8696 | | 0.2584 | 10.0 | 1500 | 0.3756 | 0.8696 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1