--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-cassava results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.8761682242990654 --- # vit-base-patch16-224-in21k-finetuned-cassava This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3875 - Accuracy: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5531 | 1.0 | 535 | 0.4938 | 0.8336 | | 0.4139 | 2.0 | 1070 | 0.4071 | 0.8612 | | 0.287 | 3.0 | 1605 | 0.3954 | 0.8643 | | 0.4211 | 4.0 | 2140 | 0.3906 | 0.8701 | | 0.316 | 5.0 | 2675 | 0.3716 | 0.8755 | | 0.2709 | 6.0 | 3210 | 0.3784 | 0.8736 | | 0.177 | 7.0 | 3745 | 0.3772 | 0.8745 | | 0.2409 | 8.0 | 4280 | 0.3875 | 0.8762 | | 0.1929 | 9.0 | 4815 | 0.3915 | 0.8708 | | 0.1877 | 10.0 | 5350 | 0.3881 | 0.8715 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1