--- license: mit base_model: dbmdz/bert-base-german-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: class_classificator_results results: [] --- # class_classificator_results This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co./dbmdz/bert-base-german-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7400 - Precision: 0.9096 - Recall: 0.9096 - F1: 0.9096 - Accuracy: 0.9096 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.321 | 1.0 | 2527 | 1.1812 | 0.8505 | 0.8505 | 0.8505 | 0.8505 | | 0.8803 | 2.0 | 5054 | 0.8872 | 0.8850 | 0.8850 | 0.8850 | 0.8850 | | 0.6046 | 3.0 | 7581 | 0.7477 | 0.9042 | 0.9042 | 0.9042 | 0.9042 | | 0.4113 | 4.0 | 10108 | 0.7400 | 0.9096 | 0.9096 | 0.9096 | 0.9096 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1