File size: 1,961 Bytes
82a3e40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
base_model: dbmdz/bert-base-german-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: class_classificator_results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# class_classificator_results
This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co./dbmdz/bert-base-german-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7400
- Precision: 0.9096
- Recall: 0.9096
- F1: 0.9096
- Accuracy: 0.9096
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.321 | 1.0 | 2527 | 1.1812 | 0.8505 | 0.8505 | 0.8505 | 0.8505 |
| 0.8803 | 2.0 | 5054 | 0.8872 | 0.8850 | 0.8850 | 0.8850 | 0.8850 |
| 0.6046 | 3.0 | 7581 | 0.7477 | 0.9042 | 0.9042 | 0.9042 | 0.9042 |
| 0.4113 | 4.0 | 10108 | 0.7400 | 0.9096 | 0.9096 | 0.9096 | 0.9096 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
|