sianbrumm commited on
Commit
059d67a
·
verified ·
1 Parent(s): ff7339e

sianbrumm/productname_ner_model

Browse files
README.md CHANGED
@@ -1,3 +1,63 @@
1
  ---
2
- license: unknown
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ base_model: dbmdz/bert-base-german-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: first_ner_model
8
+ results: []
9
  ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # first_ner_model
15
+
16
+ This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6659
19
+ - Label Metrics: {'Alcohol_content': {'precision': 0.5172413793103449, 'recall': 0.7894736842105263, 'f1': 0.625, 'number': 19}, 'Brand': {'precision': 0.8753623188405797, 'recall': 0.9082706766917293, 'f1': 0.8915129151291513, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6891891891891891, 'recall': 0.796875, 'f1': 0.7391304347826088, 'number': 64}, 'Packaging.Type': {'precision': 0.6, 'recall': 0.3, 'f1': 0.4, 'number': 20}, 'Packaging.Volume': {'precision': 0.978494623655914, 'recall': 0.7054263565891473, 'f1': 0.8198198198198199, 'number': 129}, 'Packaging.Weight': {'precision': 0.8891402714932126, 'recall': 0.9974619289340102, 'f1': 0.9401913875598087, 'number': 394}, 'Producttype': {'precision': 0.4715984147952444, 'recall': 0.5344311377245509, 'f1': 0.5010526315789474, 'number': 668}, '_': {'precision': 0.367983367983368, 'recall': 0.42857142857142855, 'f1': 0.3959731543624161, 'number': 413}, 'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677}
20
+ - Overall Metrics: {'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677}
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 5
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Label Metrics | Overall Metrics |
50
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------:|
51
+ | No log | 1.0 | 175 | 0.6684 | {'Alcohol_content': {'precision': 0.46153846153846156, 'recall': 0.3157894736842105, 'f1': 0.37499999999999994, 'number': 19}, 'Brand': {'precision': 0.8885672937771346, 'recall': 0.9233082706766917, 'f1': 0.9056047197640117, 'number': 665}, 'Packaging.Quantity': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1': 0.7384615384615384, 'number': 64}, 'Packaging.Type': {'precision': 0.6666666666666666, 'recall': 0.1, 'f1': 0.1739130434782609, 'number': 20}, 'Packaging.Volume': {'precision': 0.9782608695652174, 'recall': 0.6976744186046512, 'f1': 0.8144796380090498, 'number': 129}, 'Packaging.Weight': {'precision': 0.8828828828828829, 'recall': 0.9949238578680203, 'f1': 0.9355608591885441, 'number': 394}, 'Producttype': {'precision': 0.43159203980099503, 'recall': 0.5194610778443114, 'f1': 0.4714673913043478, 'number': 668}, '_': {'precision': 0.3300970873786408, 'recall': 0.4116222760290557, 'f1': 0.3663793103448276, 'number': 413}, 'overall_precision': 0.6350837138508372, 'overall_recall': 0.7036256323777403, 'overall_f1': 0.6676, 'overall_accuracy': 0.7299687825182102} | {'overall_precision': 0.6350837138508372, 'overall_recall': 0.7036256323777403, 'overall_f1': 0.6676, 'overall_accuracy': 0.7299687825182102} |
52
+ | No log | 2.0 | 350 | 0.6659 | {'Alcohol_content': {'precision': 0.5172413793103449, 'recall': 0.7894736842105263, 'f1': 0.625, 'number': 19}, 'Brand': {'precision': 0.8753623188405797, 'recall': 0.9082706766917293, 'f1': 0.8915129151291513, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6891891891891891, 'recall': 0.796875, 'f1': 0.7391304347826088, 'number': 64}, 'Packaging.Type': {'precision': 0.6, 'recall': 0.3, 'f1': 0.4, 'number': 20}, 'Packaging.Volume': {'precision': 0.978494623655914, 'recall': 0.7054263565891473, 'f1': 0.8198198198198199, 'number': 129}, 'Packaging.Weight': {'precision': 0.8891402714932126, 'recall': 0.9974619289340102, 'f1': 0.9401913875598087, 'number': 394}, 'Producttype': {'precision': 0.4715984147952444, 'recall': 0.5344311377245509, 'f1': 0.5010526315789474, 'number': 668}, '_': {'precision': 0.367983367983368, 'recall': 0.42857142857142855, 'f1': 0.3959731543624161, 'number': 413}, 'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677} | {'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677} |
53
+ | 0.75 | 3.0 | 525 | 0.6749 | {'Alcohol_content': {'precision': 0.6363636363636364, 'recall': 0.7368421052631579, 'f1': 0.6829268292682926, 'number': 19}, 'Brand': {'precision': 0.9033674963396779, 'recall': 0.9278195488721804, 'f1': 0.9154302670623146, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6619718309859155, 'recall': 0.734375, 'f1': 0.6962962962962963, 'number': 64}, 'Packaging.Type': {'precision': 0.5384615384615384, 'recall': 0.35, 'f1': 0.4242424242424242, 'number': 20}, 'Packaging.Volume': {'precision': 0.9787234042553191, 'recall': 0.7131782945736435, 'f1': 0.8251121076233184, 'number': 129}, 'Packaging.Weight': {'precision': 0.8888888888888888, 'recall': 0.9949238578680203, 'f1': 0.9389221556886227, 'number': 394}, 'Producttype': {'precision': 0.5122615803814714, 'recall': 0.562874251497006, 'f1': 0.536376604850214, 'number': 668}, '_': {'precision': 0.4088235294117647, 'recall': 0.3365617433414044, 'f1': 0.36918990703851257, 'number': 413}, 'overall_precision': 0.7022518765638032, 'overall_recall': 0.7099494097807757, 'overall_f1': 0.7060796645702306, 'overall_accuracy': 0.7419354838709677} | {'overall_precision': 0.7022518765638032, 'overall_recall': 0.7099494097807757, 'overall_f1': 0.7060796645702306, 'overall_accuracy': 0.7419354838709677} |
54
+ | 0.75 | 4.0 | 700 | 0.6891 | {'Alcohol_content': {'precision': 0.7142857142857143, 'recall': 0.7894736842105263, 'f1': 0.7500000000000001, 'number': 19}, 'Brand': {'precision': 0.9104258443465492, 'recall': 0.9323308270676691, 'f1': 0.9212481426448736, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6712328767123288, 'recall': 0.765625, 'f1': 0.7153284671532847, 'number': 64}, 'Packaging.Type': {'precision': 0.42105263157894735, 'recall': 0.4, 'f1': 0.41025641025641024, 'number': 20}, 'Packaging.Volume': {'precision': 0.9787234042553191, 'recall': 0.7131782945736435, 'f1': 0.8251121076233184, 'number': 129}, 'Packaging.Weight': {'precision': 0.8888888888888888, 'recall': 0.9949238578680203, 'f1': 0.9389221556886227, 'number': 394}, 'Producttype': {'precision': 0.505464480874317, 'recall': 0.5538922155688623, 'f1': 0.5285714285714285, 'number': 668}, '_': {'precision': 0.4217506631299735, 'recall': 0.38498789346246975, 'f1': 0.40253164556962034, 'number': 413}, 'overall_precision': 0.699343724364233, 'overall_recall': 0.7188026981450253, 'overall_f1': 0.7089397089397088, 'overall_accuracy': 0.7447970863683663} | {'overall_precision': 0.699343724364233, 'overall_recall': 0.7188026981450253, 'overall_f1': 0.7089397089397088, 'overall_accuracy': 0.7447970863683663} |
55
+ | 0.75 | 5.0 | 875 | 0.7116 | {'Alcohol_content': {'precision': 0.7142857142857143, 'recall': 0.7894736842105263, 'f1': 0.7500000000000001, 'number': 19}, 'Brand': {'precision': 0.9092240117130308, 'recall': 0.9338345864661655, 'f1': 0.9213649851632048, 'number': 665}, 'Packaging.Quantity': {'precision': 0.7, 'recall': 0.765625, 'f1': 0.7313432835820896, 'number': 64}, 'Packaging.Type': {'precision': 0.5, 'recall': 0.55, 'f1': 0.5238095238095238, 'number': 20}, 'Packaging.Volume': {'precision': 0.968421052631579, 'recall': 0.7131782945736435, 'f1': 0.8214285714285715, 'number': 129}, 'Packaging.Weight': {'precision': 0.8886363636363637, 'recall': 0.9923857868020305, 'f1': 0.9376498800959233, 'number': 394}, 'Producttype': {'precision': 0.5089655172413793, 'recall': 0.5523952095808383, 'f1': 0.529791816223977, 'number': 668}, '_': {'precision': 0.4172661870503597, 'recall': 0.4213075060532688, 'f1': 0.419277108433735, 'number': 413}, 'overall_precision': 0.6963202587949858, 'overall_recall': 0.7259696458684655, 'overall_f1': 0.7108359133126935, 'overall_accuracy': 0.7484391259105099} | {'overall_precision': 0.6963202587949858, 'overall_recall': 0.7259696458684655, 'overall_f1': 0.7108359133126935, 'overall_accuracy': 0.7484391259105099} |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.41.2
61
+ - Pytorch 2.0.1+cu117
62
+ - Datasets 2.20.0
63
+ - Tokenizers 0.19.1
config.json CHANGED
@@ -1,63 +1,59 @@
1
- {
2
- "_name_or_path": "dbmdz/bert-base-german-uncased",
3
- "architectures": [
4
- "BertForTokenClassification"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "classifier_dropout": null,
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.1,
10
- "hidden_size": 768,
11
- "id2label": {
12
- "0": "0",
13
- "1": "B-Brand",
14
- "2": "I-Brand",
15
- "3": "B-Producttype",
16
- "4": "I-Producttype",
17
- "5": "B-Packaging.Type",
18
- "6": "I-Packaging.Type",
19
- "7": "B-Packaging.Volume",
20
- "8": "I-Packaging.Volume",
21
- "9": "B-Packaging.Weight",
22
- "10": "I-Packaging.Weight",
23
- "11": "B-Packaging.Quantity",
24
- "12": "I-Packaging.Quantity",
25
- "13": "B-Origin",
26
- "14": "I-Origin",
27
- "15": "B-Alcohol_content",
28
- "16": "I-Alcohol_content"
29
- },
30
- "initializer_range": 0.02,
31
- "intermediate_size": 3072,
32
- "label2id": {
33
- "0": 0,
34
- "B-Alcohol_content": 15,
35
- "B-Brand": 1,
36
- "B-Origin": 13,
37
- "B-Packaging.Quantity": 11,
38
- "B-Packaging.Type": 5,
39
- "B-Packaging.Volume": 7,
40
- "B-Packaging.Weight": 9,
41
- "B-Producttype": 3,
42
- "I-Alcohol_content": 16,
43
- "I-Brand": 2,
44
- "I-Origin": 14,
45
- "I-Packaging.Quantity": 12,
46
- "I-Packaging.Type": 6,
47
- "I-Packaging.Volume": 8,
48
- "I-Packaging.Weight": 10,
49
- "I-Producttype": 4
50
- },
51
- "layer_norm_eps": 1e-12,
52
- "max_position_embeddings": 512,
53
- "model_type": "bert",
54
- "num_attention_heads": 12,
55
- "num_hidden_layers": 12,
56
- "pad_token_id": 0,
57
- "position_embedding_type": "absolute",
58
- "torch_dtype": "float32",
59
- "transformers_version": "4.11.0",
60
- "type_vocab_size": 2,
61
- "use_cache": true,
62
- "vocab_size": 31102
63
- }
 
1
+ {
2
+ "_name_or_path": "dbmdz/bert-base-german-uncased",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "0",
13
+ "1": "B-Brand",
14
+ "2": "I-Brand",
15
+ "3": "B-Producttype",
16
+ "4": "I-Producttype",
17
+ "5": "B-Packaging.Type",
18
+ "6": "I-Packaging.Type",
19
+ "7": "B-Packaging.Volume",
20
+ "8": "I-Packaging.Volume",
21
+ "9": "B-Packaging.Weight",
22
+ "10": "I-Packaging.Weight",
23
+ "11": "B-Packaging.Quantity",
24
+ "12": "I-Packaging.Quantity",
25
+ "13": "B-Alcohol_content",
26
+ "14": "I-Alcohol_content"
27
+ },
28
+ "initializer_range": 0.02,
29
+ "intermediate_size": 3072,
30
+ "label2id": {
31
+ "0": 0,
32
+ "B-Alcohol_content": 13,
33
+ "B-Brand": 1,
34
+ "B-Packaging.Quantity": 11,
35
+ "B-Packaging.Type": 5,
36
+ "B-Packaging.Volume": 7,
37
+ "B-Packaging.Weight": 9,
38
+ "B-Producttype": 3,
39
+ "I-Alcohol_content": 14,
40
+ "I-Brand": 2,
41
+ "I-Packaging.Quantity": 12,
42
+ "I-Packaging.Type": 6,
43
+ "I-Packaging.Volume": 8,
44
+ "I-Packaging.Weight": 10,
45
+ "I-Producttype": 4
46
+ },
47
+ "layer_norm_eps": 1e-12,
48
+ "max_position_embeddings": 512,
49
+ "model_type": "bert",
50
+ "num_attention_heads": 12,
51
+ "num_hidden_layers": 12,
52
+ "pad_token_id": 0,
53
+ "position_embedding_type": "absolute",
54
+ "torch_dtype": "float32",
55
+ "transformers_version": "4.41.2",
56
+ "type_vocab_size": 2,
57
+ "use_cache": true,
58
+ "vocab_size": 31102
59
+ }
 
 
 
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3060adca20554cac9d16cca74eb77ca07d1da21d641355b0cfffe1cd5ac481c5
3
+ size 437417836
special_tokens_map.json CHANGED
@@ -1 +1,7 @@
1
- {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1 +1,58 @@
1
- {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "max_len": 512, "special_tokens_map_file": null, "name_or_path": "dbmdz/bert-base-german-uncased", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_len": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1327345a470e7541f1894211ced99ce1ead1441dc148a0274ee953780dfa0577
3
- size 2799
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e02b94538fb6b33d57eed26acf14eac2aba17bd0f37abcf068897d96296e741
3
+ size 4667