sianbrumm/productname_ner_model
Browse files- README.md +61 -1
- config.json +59 -63
- model.safetensors +3 -0
- special_tokens_map.json +7 -1
- tokenizer.json +0 -0
- tokenizer_config.json +58 -1
- training_args.bin +2 -2
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: dbmdz/bert-base-german-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: first_ner_model
|
8 |
+
results: []
|
9 |
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# first_ner_model
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.6659
|
19 |
+
- Label Metrics: {'Alcohol_content': {'precision': 0.5172413793103449, 'recall': 0.7894736842105263, 'f1': 0.625, 'number': 19}, 'Brand': {'precision': 0.8753623188405797, 'recall': 0.9082706766917293, 'f1': 0.8915129151291513, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6891891891891891, 'recall': 0.796875, 'f1': 0.7391304347826088, 'number': 64}, 'Packaging.Type': {'precision': 0.6, 'recall': 0.3, 'f1': 0.4, 'number': 20}, 'Packaging.Volume': {'precision': 0.978494623655914, 'recall': 0.7054263565891473, 'f1': 0.8198198198198199, 'number': 129}, 'Packaging.Weight': {'precision': 0.8891402714932126, 'recall': 0.9974619289340102, 'f1': 0.9401913875598087, 'number': 394}, 'Producttype': {'precision': 0.4715984147952444, 'recall': 0.5344311377245509, 'f1': 0.5010526315789474, 'number': 668}, '_': {'precision': 0.367983367983368, 'recall': 0.42857142857142855, 'f1': 0.3959731543624161, 'number': 413}, 'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677}
|
20 |
+
- Overall Metrics: {'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677}
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 5
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Label Metrics | Overall Metrics |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
51 |
+
| No log | 1.0 | 175 | 0.6684 | {'Alcohol_content': {'precision': 0.46153846153846156, 'recall': 0.3157894736842105, 'f1': 0.37499999999999994, 'number': 19}, 'Brand': {'precision': 0.8885672937771346, 'recall': 0.9233082706766917, 'f1': 0.9056047197640117, 'number': 665}, 'Packaging.Quantity': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1': 0.7384615384615384, 'number': 64}, 'Packaging.Type': {'precision': 0.6666666666666666, 'recall': 0.1, 'f1': 0.1739130434782609, 'number': 20}, 'Packaging.Volume': {'precision': 0.9782608695652174, 'recall': 0.6976744186046512, 'f1': 0.8144796380090498, 'number': 129}, 'Packaging.Weight': {'precision': 0.8828828828828829, 'recall': 0.9949238578680203, 'f1': 0.9355608591885441, 'number': 394}, 'Producttype': {'precision': 0.43159203980099503, 'recall': 0.5194610778443114, 'f1': 0.4714673913043478, 'number': 668}, '_': {'precision': 0.3300970873786408, 'recall': 0.4116222760290557, 'f1': 0.3663793103448276, 'number': 413}, 'overall_precision': 0.6350837138508372, 'overall_recall': 0.7036256323777403, 'overall_f1': 0.6676, 'overall_accuracy': 0.7299687825182102} | {'overall_precision': 0.6350837138508372, 'overall_recall': 0.7036256323777403, 'overall_f1': 0.6676, 'overall_accuracy': 0.7299687825182102} |
|
52 |
+
| No log | 2.0 | 350 | 0.6659 | {'Alcohol_content': {'precision': 0.5172413793103449, 'recall': 0.7894736842105263, 'f1': 0.625, 'number': 19}, 'Brand': {'precision': 0.8753623188405797, 'recall': 0.9082706766917293, 'f1': 0.8915129151291513, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6891891891891891, 'recall': 0.796875, 'f1': 0.7391304347826088, 'number': 64}, 'Packaging.Type': {'precision': 0.6, 'recall': 0.3, 'f1': 0.4, 'number': 20}, 'Packaging.Volume': {'precision': 0.978494623655914, 'recall': 0.7054263565891473, 'f1': 0.8198198198198199, 'number': 129}, 'Packaging.Weight': {'precision': 0.8891402714932126, 'recall': 0.9974619289340102, 'f1': 0.9401913875598087, 'number': 394}, 'Producttype': {'precision': 0.4715984147952444, 'recall': 0.5344311377245509, 'f1': 0.5010526315789474, 'number': 668}, '_': {'precision': 0.367983367983368, 'recall': 0.42857142857142855, 'f1': 0.3959731543624161, 'number': 413}, 'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677} | {'overall_precision': 0.657608695652174, 'overall_recall': 0.7141652613827993, 'overall_f1': 0.6847210994341149, 'overall_accuracy': 0.7419354838709677} |
|
53 |
+
| 0.75 | 3.0 | 525 | 0.6749 | {'Alcohol_content': {'precision': 0.6363636363636364, 'recall': 0.7368421052631579, 'f1': 0.6829268292682926, 'number': 19}, 'Brand': {'precision': 0.9033674963396779, 'recall': 0.9278195488721804, 'f1': 0.9154302670623146, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6619718309859155, 'recall': 0.734375, 'f1': 0.6962962962962963, 'number': 64}, 'Packaging.Type': {'precision': 0.5384615384615384, 'recall': 0.35, 'f1': 0.4242424242424242, 'number': 20}, 'Packaging.Volume': {'precision': 0.9787234042553191, 'recall': 0.7131782945736435, 'f1': 0.8251121076233184, 'number': 129}, 'Packaging.Weight': {'precision': 0.8888888888888888, 'recall': 0.9949238578680203, 'f1': 0.9389221556886227, 'number': 394}, 'Producttype': {'precision': 0.5122615803814714, 'recall': 0.562874251497006, 'f1': 0.536376604850214, 'number': 668}, '_': {'precision': 0.4088235294117647, 'recall': 0.3365617433414044, 'f1': 0.36918990703851257, 'number': 413}, 'overall_precision': 0.7022518765638032, 'overall_recall': 0.7099494097807757, 'overall_f1': 0.7060796645702306, 'overall_accuracy': 0.7419354838709677} | {'overall_precision': 0.7022518765638032, 'overall_recall': 0.7099494097807757, 'overall_f1': 0.7060796645702306, 'overall_accuracy': 0.7419354838709677} |
|
54 |
+
| 0.75 | 4.0 | 700 | 0.6891 | {'Alcohol_content': {'precision': 0.7142857142857143, 'recall': 0.7894736842105263, 'f1': 0.7500000000000001, 'number': 19}, 'Brand': {'precision': 0.9104258443465492, 'recall': 0.9323308270676691, 'f1': 0.9212481426448736, 'number': 665}, 'Packaging.Quantity': {'precision': 0.6712328767123288, 'recall': 0.765625, 'f1': 0.7153284671532847, 'number': 64}, 'Packaging.Type': {'precision': 0.42105263157894735, 'recall': 0.4, 'f1': 0.41025641025641024, 'number': 20}, 'Packaging.Volume': {'precision': 0.9787234042553191, 'recall': 0.7131782945736435, 'f1': 0.8251121076233184, 'number': 129}, 'Packaging.Weight': {'precision': 0.8888888888888888, 'recall': 0.9949238578680203, 'f1': 0.9389221556886227, 'number': 394}, 'Producttype': {'precision': 0.505464480874317, 'recall': 0.5538922155688623, 'f1': 0.5285714285714285, 'number': 668}, '_': {'precision': 0.4217506631299735, 'recall': 0.38498789346246975, 'f1': 0.40253164556962034, 'number': 413}, 'overall_precision': 0.699343724364233, 'overall_recall': 0.7188026981450253, 'overall_f1': 0.7089397089397088, 'overall_accuracy': 0.7447970863683663} | {'overall_precision': 0.699343724364233, 'overall_recall': 0.7188026981450253, 'overall_f1': 0.7089397089397088, 'overall_accuracy': 0.7447970863683663} |
|
55 |
+
| 0.75 | 5.0 | 875 | 0.7116 | {'Alcohol_content': {'precision': 0.7142857142857143, 'recall': 0.7894736842105263, 'f1': 0.7500000000000001, 'number': 19}, 'Brand': {'precision': 0.9092240117130308, 'recall': 0.9338345864661655, 'f1': 0.9213649851632048, 'number': 665}, 'Packaging.Quantity': {'precision': 0.7, 'recall': 0.765625, 'f1': 0.7313432835820896, 'number': 64}, 'Packaging.Type': {'precision': 0.5, 'recall': 0.55, 'f1': 0.5238095238095238, 'number': 20}, 'Packaging.Volume': {'precision': 0.968421052631579, 'recall': 0.7131782945736435, 'f1': 0.8214285714285715, 'number': 129}, 'Packaging.Weight': {'precision': 0.8886363636363637, 'recall': 0.9923857868020305, 'f1': 0.9376498800959233, 'number': 394}, 'Producttype': {'precision': 0.5089655172413793, 'recall': 0.5523952095808383, 'f1': 0.529791816223977, 'number': 668}, '_': {'precision': 0.4172661870503597, 'recall': 0.4213075060532688, 'f1': 0.419277108433735, 'number': 413}, 'overall_precision': 0.6963202587949858, 'overall_recall': 0.7259696458684655, 'overall_f1': 0.7108359133126935, 'overall_accuracy': 0.7484391259105099} | {'overall_precision': 0.6963202587949858, 'overall_recall': 0.7259696458684655, 'overall_f1': 0.7108359133126935, 'overall_accuracy': 0.7484391259105099} |
|
56 |
+
|
57 |
+
|
58 |
+
### Framework versions
|
59 |
+
|
60 |
+
- Transformers 4.41.2
|
61 |
+
- Pytorch 2.0.1+cu117
|
62 |
+
- Datasets 2.20.0
|
63 |
+
- Tokenizers 0.19.1
|
config.json
CHANGED
@@ -1,63 +1,59 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "dbmdz/bert-base-german-uncased",
|
3 |
-
"architectures": [
|
4 |
-
"BertForTokenClassification"
|
5 |
-
],
|
6 |
-
"attention_probs_dropout_prob": 0.1,
|
7 |
-
"classifier_dropout": null,
|
8 |
-
"hidden_act": "gelu",
|
9 |
-
"hidden_dropout_prob": 0.1,
|
10 |
-
"hidden_size": 768,
|
11 |
-
"id2label": {
|
12 |
-
"0": "0",
|
13 |
-
"1": "B-Brand",
|
14 |
-
"2": "I-Brand",
|
15 |
-
"3": "B-Producttype",
|
16 |
-
"4": "I-Producttype",
|
17 |
-
"5": "B-Packaging.Type",
|
18 |
-
"6": "I-Packaging.Type",
|
19 |
-
"7": "B-Packaging.Volume",
|
20 |
-
"8": "I-Packaging.Volume",
|
21 |
-
"9": "B-Packaging.Weight",
|
22 |
-
"10": "I-Packaging.Weight",
|
23 |
-
"11": "B-Packaging.Quantity",
|
24 |
-
"12": "I-Packaging.Quantity",
|
25 |
-
"13": "B-
|
26 |
-
"14": "I-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"
|
31 |
-
|
32 |
-
|
33 |
-
"
|
34 |
-
"B-
|
35 |
-
"B-
|
36 |
-
"B-
|
37 |
-
"B-Packaging.
|
38 |
-
"B-
|
39 |
-
"
|
40 |
-
"
|
41 |
-
"
|
42 |
-
"I-
|
43 |
-
"I-
|
44 |
-
"I-
|
45 |
-
"I-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
"
|
52 |
-
"
|
53 |
-
"
|
54 |
-
"
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
-
"
|
59 |
-
|
60 |
-
"type_vocab_size": 2,
|
61 |
-
"use_cache": true,
|
62 |
-
"vocab_size": 31102
|
63 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "dbmdz/bert-base-german-uncased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "0",
|
13 |
+
"1": "B-Brand",
|
14 |
+
"2": "I-Brand",
|
15 |
+
"3": "B-Producttype",
|
16 |
+
"4": "I-Producttype",
|
17 |
+
"5": "B-Packaging.Type",
|
18 |
+
"6": "I-Packaging.Type",
|
19 |
+
"7": "B-Packaging.Volume",
|
20 |
+
"8": "I-Packaging.Volume",
|
21 |
+
"9": "B-Packaging.Weight",
|
22 |
+
"10": "I-Packaging.Weight",
|
23 |
+
"11": "B-Packaging.Quantity",
|
24 |
+
"12": "I-Packaging.Quantity",
|
25 |
+
"13": "B-Alcohol_content",
|
26 |
+
"14": "I-Alcohol_content"
|
27 |
+
},
|
28 |
+
"initializer_range": 0.02,
|
29 |
+
"intermediate_size": 3072,
|
30 |
+
"label2id": {
|
31 |
+
"0": 0,
|
32 |
+
"B-Alcohol_content": 13,
|
33 |
+
"B-Brand": 1,
|
34 |
+
"B-Packaging.Quantity": 11,
|
35 |
+
"B-Packaging.Type": 5,
|
36 |
+
"B-Packaging.Volume": 7,
|
37 |
+
"B-Packaging.Weight": 9,
|
38 |
+
"B-Producttype": 3,
|
39 |
+
"I-Alcohol_content": 14,
|
40 |
+
"I-Brand": 2,
|
41 |
+
"I-Packaging.Quantity": 12,
|
42 |
+
"I-Packaging.Type": 6,
|
43 |
+
"I-Packaging.Volume": 8,
|
44 |
+
"I-Packaging.Weight": 10,
|
45 |
+
"I-Producttype": 4
|
46 |
+
},
|
47 |
+
"layer_norm_eps": 1e-12,
|
48 |
+
"max_position_embeddings": 512,
|
49 |
+
"model_type": "bert",
|
50 |
+
"num_attention_heads": 12,
|
51 |
+
"num_hidden_layers": 12,
|
52 |
+
"pad_token_id": 0,
|
53 |
+
"position_embedding_type": "absolute",
|
54 |
+
"torch_dtype": "float32",
|
55 |
+
"transformers_version": "4.41.2",
|
56 |
+
"type_vocab_size": 2,
|
57 |
+
"use_cache": true,
|
58 |
+
"vocab_size": 31102
|
59 |
+
}
|
|
|
|
|
|
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3060adca20554cac9d16cca74eb77ca07d1da21d641355b0cfffe1cd5ac481c5
|
3 |
+
size 437417836
|
special_tokens_map.json
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1 +1,58 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"101": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"102": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"103": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_len": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e02b94538fb6b33d57eed26acf14eac2aba17bd0f37abcf068897d96296e741
|
3 |
+
size 4667
|