import streamlit as st from transformers import pipeline @st.cache_resource def load_summarizer(): model = pipeline("summarization", device=0) return model def generate_chunks(inp_str): max_chunk = 500 inp_str = inp_str.replace('.', '.') inp_str = inp_str.replace('?', '?') inp_str = inp_str.replace('!', '!') sentences = inp_str.split('') current_chunk = 0 chunks = [] for sentence in sentences: if len(chunks) == current_chunk + 1: if len(chunks[current_chunk]) + len(sentence.split(' ')) <= max_chunk: chunks[current_chunk].extend(sentence.split(' ')) else: current_chunk += 1 chunks.append(sentence.split(' ')) else: chunks.append(sentence.split(' ')) for chunk_id in range(len(chunks)): chunks[chunk_id] = ' '.join(chunks[chunk_id]) return chunks summarizer = load_summarizer() st.title("Summarize Text") sentence = st.text_area('Please paste your article :', height=30) button = st.button("Summarize") max = st.sidebar.slider('Select max', 50, 500, step=10, value=150) min = st.sidebar.slider('Select min', 10, 450, step=10, value=50) do_sample = st.sidebar.checkbox("Do sample", value=False) with st.spinner("Generating Summary.."): if button and sentence: chunks = generate_chunks(sentence) res = summarizer(chunks, max_length=max, min_length=min, do_sample=do_sample) text = ' '.join([summ['summary_text'] for summ in res]) # st.write(result[0]['summary_text']) st.write(text)