|
from collections import OrderedDict |
|
from typing import Dict, Final, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import CLIPVisionModelWithProjection, logging |
|
from transformers.modeling_outputs import ImageClassifierOutputWithNoAttention |
|
from transformers.models.clip.configuration_clip import CLIPVisionConfig |
|
|
|
logging.set_verbosity_error() |
|
|
|
URLS_LINEAR: Final[Dict[str, str]] = { |
|
"sac+logos+ava1-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/sac%2Blogos%2Bava1-l14-linearMSE.pth", |
|
"ava+logos-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-linearMSE.pth", |
|
} |
|
|
|
|
|
URLS_RELU: Final[Dict[str, str]] = { |
|
"ava+logos-l14-reluMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-reluMSE.pth", |
|
} |
|
|
|
|
|
class AestheticsPredictorV2Linear(CLIPVisionModelWithProjection): |
|
def __init__(self, config: CLIPVisionConfig) -> None: |
|
super().__init__(config) |
|
self.layers = nn.Sequential( |
|
nn.Linear(config.projection_dim, 1024), |
|
nn.Dropout(0.2), |
|
nn.Linear(1024, 128), |
|
nn.Dropout(0.2), |
|
nn.Linear(128, 64), |
|
nn.Dropout(0.1), |
|
nn.Linear(64, 16), |
|
nn.Linear(16, 1), |
|
) |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = super().forward( |
|
pixel_values=pixel_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
image_embeds = outputs[0] |
|
image_embeds /= image_embeds.norm(dim=-1, keepdim=True) |
|
|
|
prediction = self.layers(image_embeds) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.MSELoss() |
|
loss = loss_fct() |
|
|
|
if not return_dict: |
|
return (loss, prediction, image_embeds) |
|
|
|
return ImageClassifierOutputWithNoAttention( |
|
loss=loss, |
|
logits=prediction, |
|
hidden_states=image_embeds, |
|
) |
|
|
|
|
|
class AestheticsPredictorV2ReLU(AestheticsPredictorV2Linear): |
|
def __init__(self, config: CLIPVisionConfig): |
|
super().__init__(config) |
|
self.layers = nn.Sequential( |
|
nn.Linear(config.projection_dim, 1024), |
|
nn.ReLU(), |
|
nn.Dropout(0.2), |
|
nn.Linear(1024, 128), |
|
nn.ReLU(), |
|
nn.Dropout(0.2), |
|
nn.Linear(128, 64), |
|
nn.ReLU(), |
|
nn.Dropout(0.1), |
|
nn.Linear(64, 16), |
|
nn.ReLU(), |
|
nn.Linear(16, 1), |
|
) |
|
self.post_init() |
|
|
|
|
|
def convert_v2_linear_from_openai_clip( |
|
predictor_head_name: str, |
|
openai_model_name: str = "openai/clip-vit-large-patch14", |
|
) -> AestheticsPredictorV2Linear: |
|
model = AestheticsPredictorV2Linear.from_pretrained(openai_model_name) |
|
|
|
state_dict = torch.hub.load_state_dict_from_url( |
|
URLS_LINEAR[predictor_head_name], map_location="cpu" |
|
) |
|
assert isinstance(state_dict, OrderedDict) |
|
|
|
|
|
state_dict = OrderedDict( |
|
((k.replace("layers.", ""), v) for k, v in state_dict.items()) |
|
) |
|
model.layers.load_state_dict(state_dict) |
|
|
|
model.eval() |
|
|
|
return model |
|
|
|
|
|
def convert_v2_relu_from_openai_clip( |
|
predictor_head_name: str, |
|
openai_model_name: str = "openai/clip-vit-large-patch14", |
|
) -> AestheticsPredictorV2ReLU: |
|
model = AestheticsPredictorV2ReLU.from_pretrained(openai_model_name) |
|
|
|
state_dict = torch.hub.load_state_dict_from_url( |
|
URLS_RELU[predictor_head_name], map_location="cpu" |
|
) |
|
assert isinstance(state_dict, OrderedDict) |
|
|
|
|
|
state_dict = OrderedDict( |
|
((k.replace("layers.", ""), v) for k, v in state_dict.items()) |
|
) |
|
model.layers.load_state_dict(state_dict) |
|
|
|
model.eval() |
|
|
|
return model |
|
|