shunk031's picture
Upload AestheticsPredictorV2Linear
a9a821c verified
raw
history blame
5.01 kB
from collections import OrderedDict
from typing import Dict, Final, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import CLIPVisionModelWithProjection, logging
from transformers.modeling_outputs import ImageClassifierOutputWithNoAttention
from .configuration_predictor import AestheticsPredictorConfig
logging.set_verbosity_error()
URLS_LINEAR: Final[Dict[str, str]] = {
"sac+logos+ava1-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/sac%2Blogos%2Bava1-l14-linearMSE.pth",
"ava+logos-l14-linearMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-linearMSE.pth",
}
URLS_RELU: Final[Dict[str, str]] = {
"ava+logos-l14-reluMSE": "https://github.com/christophschuhmann/improved-aesthetic-predictor/raw/main/ava%2Blogos-l14-reluMSE.pth",
}
class AestheticsPredictorV2Linear(CLIPVisionModelWithProjection):
def __init__(self, config: AestheticsPredictorConfig) -> None:
super().__init__(config)
self.layers = nn.Sequential(
nn.Linear(config.projection_dim, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1),
)
self.post_init()
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = super().forward(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = outputs[0] # image_embeds
image_embeds /= image_embeds.norm(dim=-1, keepdim=True)
prediction = self.layers(image_embeds)
loss = None
if labels is not None:
loss_fct = nn.MSELoss()
loss = loss_fct()
if not return_dict:
return (loss, prediction, image_embeds)
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=prediction,
hidden_states=image_embeds,
)
class AestheticsPredictorV2ReLU(AestheticsPredictorV2Linear):
def __init__(self, config: AestheticsPredictorConfig) -> None:
super().__init__(config)
self.layers = nn.Sequential(
nn.Linear(config.projection_dim, 1024),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.ReLU(),
nn.Linear(16, 1),
)
self.post_init()
def convert_v2_linear_from_openai_clip(
predictor_head_name: str,
openai_model_name: str = "openai/clip-vit-large-patch14",
config: Optional[AestheticsPredictorConfig] = None,
) -> AestheticsPredictorV2Linear:
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
model = AestheticsPredictorV2Linear(config)
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
model.load_state_dict(clip_model.state_dict(), strict=False)
state_dict = torch.hub.load_state_dict_from_url(
URLS_LINEAR[predictor_head_name], map_location="cpu"
)
assert isinstance(state_dict, OrderedDict)
# remove `layers.` from the key of the state_dict
state_dict = OrderedDict(
((k.replace("layers.", ""), v) for k, v in state_dict.items())
)
model.layers.load_state_dict(state_dict)
model.eval()
return model
def convert_v2_relu_from_openai_clip(
predictor_head_name: str,
openai_model_name: str = "openai/clip-vit-large-patch14",
config: Optional[AestheticsPredictorConfig] = None,
) -> AestheticsPredictorV2ReLU:
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
model = AestheticsPredictorV2ReLU(config)
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
model.load_state_dict(clip_model.state_dict(), strict=False)
state_dict = torch.hub.load_state_dict_from_url(
URLS_RELU[predictor_head_name], map_location="cpu"
)
assert isinstance(state_dict, OrderedDict)
# remove `layers.` from the key of the state_dict
state_dict = OrderedDict(
((k.replace("layers.", ""), v) for k, v in state_dict.items())
)
model.layers.load_state_dict(state_dict)
model.eval()
return model