shtif commited on
Commit
3c0f927
1 Parent(s): 31de103

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -8
README.md CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.9118
22
- - Accuracy: 0.86
23
 
24
  ## Model description
25
 
@@ -38,24 +38,26 @@ More information needed
38
  ### Training hyperparameters
39
 
40
  The following hyperparameters were used during training:
41
- - learning_rate: 1e-05
42
  - train_batch_size: 8
43
  - eval_batch_size: 8
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_ratio: 0.1
48
- - num_epochs: 4
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
- | 0.0452 | 1.0 | 113 | 0.9822 | 0.85 |
56
- | 0.0089 | 2.0 | 226 | 0.9121 | 0.86 |
57
- | 0.0004 | 3.0 | 339 | 0.8943 | 0.86 |
58
- | 0.0002 | 4.0 | 452 | 0.9118 | 0.86 |
 
 
59
 
60
 
61
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.6633
22
+ - Accuracy: 0.84
23
 
24
  ## Model description
25
 
 
38
  ### Training hyperparameters
39
 
40
  The following hyperparameters were used during training:
41
+ - learning_rate: 8e-05
42
  - train_batch_size: 8
43
  - eval_batch_size: 8
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
  - lr_scheduler_type: linear
47
  - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 6
49
  - mixed_precision_training: Native AMP
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 1.3806 | 1.0 | 113 | 1.5601 | 0.53 |
56
+ | 0.9388 | 2.0 | 226 | 1.1111 | 0.67 |
57
+ | 0.8746 | 3.0 | 339 | 0.9314 | 0.71 |
58
+ | 0.5114 | 4.0 | 452 | 0.8017 | 0.75 |
59
+ | 0.4226 | 5.0 | 565 | 0.7738 | 0.81 |
60
+ | 0.23 | 6.0 | 678 | 0.6633 | 0.84 |
61
 
62
 
63
  ### Framework versions