Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1692.79 +/- 59.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19758da753ec5d6efde1352927d49331b83da221f3fc3f8fc4a747ebb155be32
|
3 |
+
size 129247
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fbd4000d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fbd400160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fbd4001f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fbd400280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5fbd400310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5fbd4003a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5fbd400430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fbd4004c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5fbd400550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fbd4005e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fbd400670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fbd400700>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5fbd404640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1691081823083494785,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADfaVD/cPoQ/WPBLv0+zRL8HDWg/7SEeP+Fp5j7FYIc+i9dDv3WOUT0wj6s/UneFPtNLCj+YyM6/DXb/vmuqtj+8O0W/JX89PzOgVb91O9E+EZ0+v0esvj8vtom+lSn1P8Vybb+IqLi/eamsPutSAT9GhdU+ciGBP/piM7+lpfW9rnwQP2ixjj9B/zw/ZF5ZvYB+Q7+Zk+88smNlP4Oujj5Hw6Y/qvaBP/bm4r4JLmY+TChCv0e6BcAvEwE/8DQtvh+WBz6gA5m+FHQ0vlHXRL0kAIo/unMxP/vHPcDrUgE/t9aiPyJemb8UsHU/vL7fPNpFi75f14M/XxFZP5m3Fr+CnRRASxHPv0WbBT+yowdAugrfP0PIRTmPce2/XjRXvWSrpT+EoY+/7MOoP4kkAsC9K7m/4xZDuxSGf75zCIM+xXJtv7pzMT/7xz3A61IBPywqKD9kajg/URyvvQRwhz7yQ9c/Ce7BvmB7uz6n3ZG+DGBDv3ZMizy5ycE/vmAHPrvJBr/ziSDA0nllvij+vT72shm9Y6rMvo8spT1mju4/pmfKPxCoEL6G5jg/SvcJQCQAij+IqLi/eamsPhlh/b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABkkaq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHB/JPQAAAADZJ/K/AAAAAIujr70AAAAAZjnxPwAAAAAskTg9AAAAAPso7j8AAAAAwWmoPQAAAACFKeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVU1iNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJlhATkAAAAA+hLlvwAAAADcEP89AAAAAAOl6j8AAAAADog+PQAAAADR9vc/AAAAAFtE9jwAAAAAgkfrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoks7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMpug9AAAAAHL3/L8AAAAA7I3KPQAAAAASo9w/AAAAAP+QOr0AAAAAs83xPwAAAAD657k7AAAAAI3j3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv2Z82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+LqhvQAAAAAYoei/AAAAADhT4DwAAAAAULjkPwAAAADwzZO8AAAAANlR7D8AAAAAwN72vQAAAAAoAwDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQUY/Vy3kSMAWyUTegDjAF0lEdAqaIMeuFHrnV9lChoBkdAlxEP7SApa2gHTegDaAhHQKmjRj94u9R1fZQoaAZHQJVdAA3kxRFoB03oA2gIR0CpqMXvQWvbdX2UKGgGR0CXRIYKIBRyaAdN6ANoCEdAqavAOtnwonV9lChoBkdAhKt8UM5OrWgHTegDaAhHQKmvd4RmK651fZQoaAZHQJNBNhkRSP5oB03oA2gIR0CpsK+pn6EbdX2UKGgGR0CUupXmNipeaAdN6ANoCEdAqbYci6g/T3V9lChoBkdAlxsdSIgvDmgHTegDaAhHQKm5FdLQHA11fZQoaAZHQJKORqGlANZoB03oA2gIR0CpvMNapxWDdX2UKGgGR0CV3i3VkMCtaAdN6ANoCEdAqb35X6qKg3V9lChoBkdAlTzFsYVIqmgHTegDaAhHQKnDfnQID5l1fZQoaAZHQIaOE/KQq7RoB03oA2gIR0Cpxn3KSxJNdX2UKGgGR0CVQsxiobXIaAdN6ANoCEdAqcor238XN3V9lChoBkdAlgnoaDPGAGgHTegDaAhHQKnLZPWxyGV1fZQoaAZHQJRgDmFJxvNoB03oA2gIR0Cp0Nxyn1nNdX2UKGgGR0CVhDqUNayKaAdN6ANoCEdAqdPb/0dzXHV9lChoBkdAkI39oWYWtWgHTegDaAhHQKnXkpLEk0J1fZQoaAZHQJRfQ2m51/5oB03oA2gIR0Cp2MmrKeTWdX2UKGgGR0CTRrS4vvjPaAdN6ANoCEdAqd5S2UjcEnV9lChoBkdAkuo9iYsunWgHTegDaAhHQKnhTwo9cKR1fZQoaAZHQJBqKlVLi/BoB03oA2gIR0Cp5QpH7P6bdX2UKGgGR0CVgP5iVjZtaAdN6ANoCEdAqeZDSofjj3V9lChoBkdAkqMQm/nGKmgHTegDaAhHQKnr8eK8+Rp1fZQoaAZHQJJcCwbEP2BoB03oA2gIR0Cp7wbu2JBPdX2UKGgGR0CVD05mh/RWaAdN6ANoCEdAqfLNfb9IgHV9lChoBkdAlYSv6GgzxmgHTegDaAhHQKn0Cuwosqd1fZQoaAZHQJJivUExIrhoB03oA2gIR0Cp+Z5id8RddX2UKGgGR0CRpod0aIepaAdN6ANoCEdAqfyky1uzhXV9lChoBkdAlq7bVFx4p2gHTegDaAhHQKoAWkGA09B1fZQoaAZHQJSFLCl7+kxoB03oA2gIR0CqAZPMB6rvdX2UKGgGR0CWhaXxOLzgaAdN6ANoCEdAqgcOf29L6HV9lChoBkdAiSM/x+az/2gHTegDaAhHQKoKHpL26Cl1fZQoaAZHQJUTcdRzijtoB03oA2gIR0CqDdoXKr7wdX2UKGgGR0CWkvXcxj8UaAdN6ANoCEdAqg8Xr+o993V9lChoBkdAgtxeLWI42mgHTegDaAhHQKoUqhbnoxJ1fZQoaAZHQJIEvI/7iyZoB03oA2gIR0CqF7cUdq+KdX2UKGgGR0B70onv2GqQaAdN6ANoCEdAqht5gJC0GHV9lChoBkdAi8cN65XlsGgHTegDaAhHQKocrnRLK3d1fZQoaAZHQJkaxlEqlP9oB03oA2gIR0CqIjvHLidbdX2UKGgGR0CWvkeDFqBVaAdN6ANoCEdAqiU9g6U7jnV9lChoBkdAleyrQC0WuWgHTegDaAhHQKoo8OS4e911fZQoaAZHQIKxgaisXBRoB03oA2gIR0CqKivrOZ9edX2UKGgGR0CZH5kRBeHBaAdN6ANoCEdAqi+z37DVIHV9lChoBkdAl1J1spG4JGgHTegDaAhHQKoyuIacZtN1fZQoaAZHQJKmoMCtA9poB03oA2gIR0CqNm/3WWhRdX2UKGgGR0CW1GPPszEaaAdN6ANoCEdAqjevcrRSg3V9lChoBkdAjGOLY5DJEGgHTegDaAhHQKo9OpLEk0J1fZQoaAZHQJTd19RaX8hoB03oA2gIR0CqQDfs/pt8dX2UKGgGR0CQv47oSteVaAdN6ANoCEdAqkPv9LpRoHV9lChoBkdAkYMvWxyGSWgHTegDaAhHQKpFKhRqGlB1fZQoaAZHQJlzgGiYb85oB03oA2gIR0CqSqLylN1ydX2UKGgGR0CVyBSLZSNwaAdN6ANoCEdAqk2divxH5XV9lChoBkdAlX9O7YkE92gHTegDaAhHQKpRUX1rZap1fZQoaAZHQJa3U5hjOLRoB03oA2gIR0CqUoyJj2BbdX2UKGgGR0CWf2hQm/nGaAdN6ANoCEdAqlgLwOOKfnV9lChoBkdAl/lZssQNC2gHTegDaAhHQKpbC3G4qgB1fZQoaAZHQJVKncynDSBoB03oA2gIR0CqXrvzOHFhdX2UKGgGR0CYRR+mWMS9aAdN6ANoCEdAql/7BVMmGHV9lChoBkdAl95RTsIE82gHTegDaAhHQKplbsJIDo11fZQoaAZHQJmVPQKKHfxoB03oA2gIR0CqaGxSxZ+ydX2UKGgGR0CYH3zpHI6saAdN6ANoCEdAqmwwTCcf/3V9lChoBkdAmKl3GS6lL2gHTegDaAhHQKptbgmZ3LV1fZQoaAZHQJYjpR/EwWZoB03oA2gIR0CqcvfMfRu1dX2UKGgGR0CZdyrBTGYKaAdN6ANoCEdAqnX5f+jubHV9lChoBkdAmZWaVMVUM2gHTegDaAhHQKp5p9VFQVN1fZQoaAZHQJlnYyfthNNoB03oA2gIR0Cqet4NZvDQdX2UKGgGR0CRbrr1dxACaAdN6ANoCEdAqoBefZmI03V9lChoBkdAl5vrwBo242gHTegDaAhHQKqDX2h7E511fZQoaAZHQJswLLA57w9oB03oA2gIR0Cqhwl41P30dX2UKGgGR0CYEj0r9VFQaAdN6ANoCEdAqohCMDOkcnV9lChoBkdAltDvH1e0HGgHTegDaAhHQKqNqNOM2m51fZQoaAZHQJbmUpSaVlhoB03oA2gIR0CqkKLa/RE4dX2UKGgGR0CZEbPvrnklaAdN6ANoCEdAqpRKh37k4nV9lChoBkdAlnPqg/Tsp2gHTegDaAhHQKqVfx7zCk51fZQoaAZHQJbcFPJq7AdoB03oA2gIR0Cqmv+WGATadX2UKGgGR0CT6/cQiA2AaAdN6ANoCEdAqp38TURWcXV9lChoBkdAlvVh8UmD2GgHTegDaAhHQKqhqXkYGdJ1fZQoaAZHQJJ8klJHy3FoB03oA2gIR0CqouR02cawdX2UKGgGR0CX3L4BmwqzaAdN6ANoCEdAqqhyKLsKLXV9lChoBkdAmT9jSgGr0mgHTegDaAhHQKqreKE384x1fZQoaAZHQJaiMKLKmsNoB03oA2gIR0Cqry145cTrdX2UKGgGR0CU+QJN0vGqaAdN6ANoCEdAqrBip1ie/nV9lChoBkdAls0UkjX4CmgHTegDaAhHQKq17hMrVe91fZQoaAZHQJLoXxqfvndoB03oA2gIR0CquPCONo8IdX2UKGgGR0CWV7m2sq8UaAdN6ANoCEdAqryeycCo0nV9lChoBkdAlgXbQPZqVWgHTegDaAhHQKq92HARChN1fZQoaAZHQJg18ao/A0toB03oA2gIR0Cqw1vboKUndX2UKGgGR0CWCyZccENfaAdN6ANoCEdAqsZdxlxwQ3V9lChoBkdAmMAr3TNMXmgHTegDaAhHQKrKEUM5OrR1fZQoaAZHQJYHt2nsLORoB03oA2gIR0Cqy1WAXl8xdX2UKGgGR0CXj1qrilzmaAdN6ANoCEdAqtDo9xIatXV9lChoBkdAlMIO717IDGgHTegDaAhHQKrT5fReC051fZQoaAZHQJm1IvduYQdoB03oA2gIR0Cq18Ba9sabdX2UKGgGR0CYRcQlKK51aAdN6ANoCEdAqtj5TCLuQnV9lChoBkdAm0+MzImw7mgHTegDaAhHQKrekADJU5x1fZQoaAZHQJM2EWLxZuBoB03oA2gIR0Cq4ZBvze41dX2UKGgGR0CagQY51eSkaAdN6ANoCEdAquVTwnYxtnV9lChoBkdAl0Wa3mV7hWgHTegDaAhHQKrml2FnIyV1fZQoaAZHQJnbz/0dzXBoB03oA2gIR0Cq7BeDWbw0dX2UKGgGR0CYCPBoVVPvaAdN6ANoCEdAqu8ZhnanJnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a29f6eff4c71cd360cbb78e9075eea60edd5ddbe5b463ac92caf90a347c2548
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76c94265b662ffd4f89d6fda9e78582ae782ba9d125ad13d1807c3a6ebc04607
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fbd4000d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fbd400160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fbd4001f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fbd400280>", "_build": "<function ActorCriticPolicy._build at 0x7f5fbd400310>", "forward": "<function ActorCriticPolicy.forward at 0x7f5fbd4003a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5fbd400430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fbd4004c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5fbd400550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fbd4005e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fbd400670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fbd400700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5fbd404640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691081823083494785, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADfaVD/cPoQ/WPBLv0+zRL8HDWg/7SEeP+Fp5j7FYIc+i9dDv3WOUT0wj6s/UneFPtNLCj+YyM6/DXb/vmuqtj+8O0W/JX89PzOgVb91O9E+EZ0+v0esvj8vtom+lSn1P8Vybb+IqLi/eamsPutSAT9GhdU+ciGBP/piM7+lpfW9rnwQP2ixjj9B/zw/ZF5ZvYB+Q7+Zk+88smNlP4Oujj5Hw6Y/qvaBP/bm4r4JLmY+TChCv0e6BcAvEwE/8DQtvh+WBz6gA5m+FHQ0vlHXRL0kAIo/unMxP/vHPcDrUgE/t9aiPyJemb8UsHU/vL7fPNpFi75f14M/XxFZP5m3Fr+CnRRASxHPv0WbBT+yowdAugrfP0PIRTmPce2/XjRXvWSrpT+EoY+/7MOoP4kkAsC9K7m/4xZDuxSGf75zCIM+xXJtv7pzMT/7xz3A61IBPywqKD9kajg/URyvvQRwhz7yQ9c/Ce7BvmB7uz6n3ZG+DGBDv3ZMizy5ycE/vmAHPrvJBr/ziSDA0nllvij+vT72shm9Y6rMvo8spT1mju4/pmfKPxCoEL6G5jg/SvcJQCQAij+IqLi/eamsPhlh/b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABkkaq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHB/JPQAAAADZJ/K/AAAAAIujr70AAAAAZjnxPwAAAAAskTg9AAAAAPso7j8AAAAAwWmoPQAAAACFKeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAVU1iNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJlhATkAAAAA+hLlvwAAAADcEP89AAAAAAOl6j8AAAAADog+PQAAAADR9vc/AAAAAFtE9jwAAAAAgkfrvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoks7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMpug9AAAAAHL3/L8AAAAA7I3KPQAAAAASo9w/AAAAAP+QOr0AAAAAs83xPwAAAAD657k7AAAAAI3j3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAv2Z82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+LqhvQAAAAAYoei/AAAAADhT4DwAAAAAULjkPwAAAADwzZO8AAAAANlR7D8AAAAAwN72vQAAAAAoAwDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQUY/Vy3kSMAWyUTegDjAF0lEdAqaIMeuFHrnV9lChoBkdAlxEP7SApa2gHTegDaAhHQKmjRj94u9R1fZQoaAZHQJVdAA3kxRFoB03oA2gIR0CpqMXvQWvbdX2UKGgGR0CXRIYKIBRyaAdN6ANoCEdAqavAOtnwonV9lChoBkdAhKt8UM5OrWgHTegDaAhHQKmvd4RmK651fZQoaAZHQJNBNhkRSP5oB03oA2gIR0CpsK+pn6EbdX2UKGgGR0CUupXmNipeaAdN6ANoCEdAqbYci6g/T3V9lChoBkdAlxsdSIgvDmgHTegDaAhHQKm5FdLQHA11fZQoaAZHQJKORqGlANZoB03oA2gIR0CpvMNapxWDdX2UKGgGR0CV3i3VkMCtaAdN6ANoCEdAqb35X6qKg3V9lChoBkdAlTzFsYVIqmgHTegDaAhHQKnDfnQID5l1fZQoaAZHQIaOE/KQq7RoB03oA2gIR0Cpxn3KSxJNdX2UKGgGR0CVQsxiobXIaAdN6ANoCEdAqcor238XN3V9lChoBkdAlgnoaDPGAGgHTegDaAhHQKnLZPWxyGV1fZQoaAZHQJRgDmFJxvNoB03oA2gIR0Cp0Nxyn1nNdX2UKGgGR0CVhDqUNayKaAdN6ANoCEdAqdPb/0dzXHV9lChoBkdAkI39oWYWtWgHTegDaAhHQKnXkpLEk0J1fZQoaAZHQJRfQ2m51/5oB03oA2gIR0Cp2MmrKeTWdX2UKGgGR0CTRrS4vvjPaAdN6ANoCEdAqd5S2UjcEnV9lChoBkdAkuo9iYsunWgHTegDaAhHQKnhTwo9cKR1fZQoaAZHQJBqKlVLi/BoB03oA2gIR0Cp5QpH7P6bdX2UKGgGR0CVgP5iVjZtaAdN6ANoCEdAqeZDSofjj3V9lChoBkdAkqMQm/nGKmgHTegDaAhHQKnr8eK8+Rp1fZQoaAZHQJJcCwbEP2BoB03oA2gIR0Cp7wbu2JBPdX2UKGgGR0CVD05mh/RWaAdN6ANoCEdAqfLNfb9IgHV9lChoBkdAlYSv6GgzxmgHTegDaAhHQKn0Cuwosqd1fZQoaAZHQJJivUExIrhoB03oA2gIR0Cp+Z5id8RddX2UKGgGR0CRpod0aIepaAdN6ANoCEdAqfyky1uzhXV9lChoBkdAlq7bVFx4p2gHTegDaAhHQKoAWkGA09B1fZQoaAZHQJSFLCl7+kxoB03oA2gIR0CqAZPMB6rvdX2UKGgGR0CWhaXxOLzgaAdN6ANoCEdAqgcOf29L6HV9lChoBkdAiSM/x+az/2gHTegDaAhHQKoKHpL26Cl1fZQoaAZHQJUTcdRzijtoB03oA2gIR0CqDdoXKr7wdX2UKGgGR0CWkvXcxj8UaAdN6ANoCEdAqg8Xr+o993V9lChoBkdAgtxeLWI42mgHTegDaAhHQKoUqhbnoxJ1fZQoaAZHQJIEvI/7iyZoB03oA2gIR0CqF7cUdq+KdX2UKGgGR0B70onv2GqQaAdN6ANoCEdAqht5gJC0GHV9lChoBkdAi8cN65XlsGgHTegDaAhHQKocrnRLK3d1fZQoaAZHQJkaxlEqlP9oB03oA2gIR0CqIjvHLidbdX2UKGgGR0CWvkeDFqBVaAdN6ANoCEdAqiU9g6U7jnV9lChoBkdAleyrQC0WuWgHTegDaAhHQKoo8OS4e911fZQoaAZHQIKxgaisXBRoB03oA2gIR0CqKivrOZ9edX2UKGgGR0CZH5kRBeHBaAdN6ANoCEdAqi+z37DVIHV9lChoBkdAl1J1spG4JGgHTegDaAhHQKoyuIacZtN1fZQoaAZHQJKmoMCtA9poB03oA2gIR0CqNm/3WWhRdX2UKGgGR0CW1GPPszEaaAdN6ANoCEdAqjevcrRSg3V9lChoBkdAjGOLY5DJEGgHTegDaAhHQKo9OpLEk0J1fZQoaAZHQJTd19RaX8hoB03oA2gIR0CqQDfs/pt8dX2UKGgGR0CQv47oSteVaAdN6ANoCEdAqkPv9LpRoHV9lChoBkdAkYMvWxyGSWgHTegDaAhHQKpFKhRqGlB1fZQoaAZHQJlzgGiYb85oB03oA2gIR0CqSqLylN1ydX2UKGgGR0CVyBSLZSNwaAdN6ANoCEdAqk2divxH5XV9lChoBkdAlX9O7YkE92gHTegDaAhHQKpRUX1rZap1fZQoaAZHQJa3U5hjOLRoB03oA2gIR0CqUoyJj2BbdX2UKGgGR0CWf2hQm/nGaAdN6ANoCEdAqlgLwOOKfnV9lChoBkdAl/lZssQNC2gHTegDaAhHQKpbC3G4qgB1fZQoaAZHQJVKncynDSBoB03oA2gIR0CqXrvzOHFhdX2UKGgGR0CYRR+mWMS9aAdN6ANoCEdAql/7BVMmGHV9lChoBkdAl95RTsIE82gHTegDaAhHQKplbsJIDo11fZQoaAZHQJmVPQKKHfxoB03oA2gIR0CqaGxSxZ+ydX2UKGgGR0CYH3zpHI6saAdN6ANoCEdAqmwwTCcf/3V9lChoBkdAmKl3GS6lL2gHTegDaAhHQKptbgmZ3LV1fZQoaAZHQJYjpR/EwWZoB03oA2gIR0CqcvfMfRu1dX2UKGgGR0CZdyrBTGYKaAdN6ANoCEdAqnX5f+jubHV9lChoBkdAmZWaVMVUM2gHTegDaAhHQKp5p9VFQVN1fZQoaAZHQJlnYyfthNNoB03oA2gIR0Cqet4NZvDQdX2UKGgGR0CRbrr1dxACaAdN6ANoCEdAqoBefZmI03V9lChoBkdAl5vrwBo242gHTegDaAhHQKqDX2h7E511fZQoaAZHQJswLLA57w9oB03oA2gIR0Cqhwl41P30dX2UKGgGR0CYEj0r9VFQaAdN6ANoCEdAqohCMDOkcnV9lChoBkdAltDvH1e0HGgHTegDaAhHQKqNqNOM2m51fZQoaAZHQJbmUpSaVlhoB03oA2gIR0CqkKLa/RE4dX2UKGgGR0CZEbPvrnklaAdN6ANoCEdAqpRKh37k4nV9lChoBkdAlnPqg/Tsp2gHTegDaAhHQKqVfx7zCk51fZQoaAZHQJbcFPJq7AdoB03oA2gIR0Cqmv+WGATadX2UKGgGR0CT6/cQiA2AaAdN6ANoCEdAqp38TURWcXV9lChoBkdAlvVh8UmD2GgHTegDaAhHQKqhqXkYGdJ1fZQoaAZHQJJ8klJHy3FoB03oA2gIR0CqouR02cawdX2UKGgGR0CX3L4BmwqzaAdN6ANoCEdAqqhyKLsKLXV9lChoBkdAmT9jSgGr0mgHTegDaAhHQKqreKE384x1fZQoaAZHQJaiMKLKmsNoB03oA2gIR0Cqry145cTrdX2UKGgGR0CU+QJN0vGqaAdN6ANoCEdAqrBip1ie/nV9lChoBkdAls0UkjX4CmgHTegDaAhHQKq17hMrVe91fZQoaAZHQJLoXxqfvndoB03oA2gIR0CquPCONo8IdX2UKGgGR0CWV7m2sq8UaAdN6ANoCEdAqryeycCo0nV9lChoBkdAlgXbQPZqVWgHTegDaAhHQKq92HARChN1fZQoaAZHQJg18ao/A0toB03oA2gIR0Cqw1vboKUndX2UKGgGR0CWCyZccENfaAdN6ANoCEdAqsZdxlxwQ3V9lChoBkdAmMAr3TNMXmgHTegDaAhHQKrKEUM5OrR1fZQoaAZHQJYHt2nsLORoB03oA2gIR0Cqy1WAXl8xdX2UKGgGR0CXj1qrilzmaAdN6ANoCEdAqtDo9xIatXV9lChoBkdAlMIO717IDGgHTegDaAhHQKrT5fReC051fZQoaAZHQJm1IvduYQdoB03oA2gIR0Cq18Ba9sabdX2UKGgGR0CYRcQlKK51aAdN6ANoCEdAqtj5TCLuQnV9lChoBkdAm0+MzImw7mgHTegDaAhHQKrekADJU5x1fZQoaAZHQJM2EWLxZuBoB03oA2gIR0Cq4ZBvze41dX2UKGgGR0CagQY51eSkaAdN6ANoCEdAquVTwnYxtnV9lChoBkdAl0Wa3mV7hWgHTegDaAhHQKrml2FnIyV1fZQoaAZHQJnbz/0dzXBoB03oA2gIR0Cq7BeDWbw0dX2UKGgGR0CYCPBoVVPvaAdN6ANoCEdAqu8ZhnanJnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68e94aa617debf4e411722f2a09b07866f0e0bf073e9b5830e5bce868366855e
|
3 |
+
size 1077306
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1692.7948755859863, "std_reward": 59.70142804199563, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-03T18:02:54.963192"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b36a78bb69b7c4354f537451c831d4d4596b608a53c83e44cfb6a12f7ad685ca
|
3 |
+
size 2176
|