--- language: - hi license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper tiny Hindi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 41.54533990599564 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: FLEURS type: google/fleurs config: hi_in split: test args: hi metrics: - name: Wer type: wer value: 41.63 --- # Whisper tiny Hindi This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5538 - Wer: 41.5453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7718 | 0.73 | 100 | 0.8130 | 55.6890 | | 0.5169 | 1.47 | 200 | 0.6515 | 48.2517 | | 0.3986 | 2.21 | 300 | 0.6001 | 44.9931 | | 0.3824 | 2.94 | 400 | 0.5720 | 43.5171 | | 0.3328 | 3.67 | 500 | 0.5632 | 42.5112 | | 0.2919 | 4.41 | 600 | 0.5594 | 42.7863 | | 0.2654 | 5.15 | 700 | 0.5552 | 41.6428 | | 0.2618 | 5.88 | 800 | 0.5530 | 41.8893 | | 0.2442 | 6.62 | 900 | 0.5539 | 41.5740 | | 0.238 | 7.35 | 1000 | 0.5538 | 41.5453 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2