shreyasharma commited on
Commit
2b9846c
1 Parent(s): 816eaa8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ model-index:
10
+ - name: t5-small-ret-conceptnet2
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # t5-small-ret-conceptnet2
18
+
19
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1709
22
+ - Acc: {'accuracy': 0.8700980392156863}
23
+ - Precision: {'precision': 0.811340206185567}
24
+ - Recall: {'recall': 0.9644607843137255}
25
+ - F1: {'f1': 0.8812989921612542}
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Acc | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------------:|:------------------------------:|:--------------------------:|
57
+ | 0.1989 | 1.0 | 721 | 0.1709 | {'accuracy': 0.8700980392156863} | {'precision': 0.811340206185567} | {'recall': 0.9644607843137255} | {'f1': 0.8812989921612542} |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.25.1
63
+ - Pytorch 1.13.0+cu116
64
+ - Datasets 2.7.1
65
+ - Tokenizers 0.13.2