--- library_name: transformers license: apache-2.0 base_model: shreyasdesaisuperU/whisper-medium-attempt2-1000-orders tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Medium 1000 orders Eleven Labs SSD superU results: [] --- # Whisper Medium 1000 orders Eleven Labs SSD superU This model is a fine-tuned version of [shreyasdesaisuperU/whisper-medium-attempt2-1000-orders](https://huggingface.co./shreyasdesaisuperU/whisper-medium-attempt2-1000-orders) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0128 - Wer: 0.8606 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0668 | 0.4032 | 100 | 0.0388 | 17.3838 | | 0.0142 | 0.8065 | 200 | 0.0061 | 11.3597 | | 0.0075 | 1.2097 | 300 | 0.0075 | 9.6386 | | 0.0073 | 1.6129 | 400 | 0.0104 | 7.7453 | | 0.0087 | 2.0161 | 500 | 0.0125 | 2.9260 | | 0.0046 | 2.4194 | 600 | 0.0080 | 1.5491 | | 0.0087 | 2.8226 | 700 | 0.0039 | 1.7212 | | 0.0066 | 3.2258 | 800 | 0.0042 | 1.3769 | | 0.0032 | 3.6290 | 900 | 0.0095 | 1.0327 | | 0.0027 | 4.0323 | 1000 | 0.0114 | 1.5491 | | 0.0021 | 4.4355 | 1100 | 0.0099 | 1.7212 | | 0.0039 | 4.8387 | 1200 | 0.0121 | 1.8933 | | 0.0017 | 5.2419 | 1300 | 0.0126 | 1.3769 | | 0.0033 | 5.6452 | 1400 | 0.0093 | 1.8933 | | 0.0037 | 6.0484 | 1500 | 0.0126 | 1.2048 | | 0.0013 | 6.4516 | 1600 | 0.0090 | 1.2048 | | 0.0014 | 6.8548 | 1700 | 0.0102 | 1.2048 | | 0.0002 | 7.2581 | 1800 | 0.0115 | 0.8606 | | 0.0005 | 7.6613 | 1900 | 0.0142 | 1.0327 | | 0.0002 | 8.0645 | 2000 | 0.0128 | 0.8606 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.2.2+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3