--- datasets: - sentence-transformers/embedding-training-data - flax-sentence-embeddings/stackexchange_xml - snli - eli5 - search_qa - multi_nli - wikihow - natural_questions - trivia_qa - ms_marco - gooaq - yahoo_answers_topics language: - en inference: false pipeline_tag: sentence-similarity task_categories: - sentence-similarity - feature-extraction - text-retrieval tags: - information retrieval - ir - documents retrieval - passage retrieval - beir - benchmark - sts - semantic search - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # bert-base-1024-biencoder-6M-pairs A long context biencoder based on [MosaicML's BERT pretrained on 1024 sequence length](https://huggingface.co./mosaicml/mosaic-bert-base-seqlen-1024). This model maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage ### Download the model and related scripts ```git clone https://huggingface.co./shreyansh26/bert-base-1024-biencoder-6M-pairs``` ### Inference ```python import torch from torch import nn from transformers import AutoModelForMaskedLM, AutoTokenizer, pipeline, AutoModel from mosaic_bert import BertModel # pip install triton==2.0.0.dev20221202 --no-deps if using Pytorch 2.0 class AutoModelForSentenceEmbedding(nn.Module): def __init__(self, model, tokenizer, normalize=True): super(AutoModelForSentenceEmbedding, self).__init__() self.model = model.to("cuda") self.normalize = normalize self.tokenizer = tokenizer def forward(self, **kwargs): model_output = self.model(**kwargs) embeddings = self.mean_pooling(model_output, kwargs['attention_mask']) if self.normalize: embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) return embeddings def mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) model = AutoModel.from_pretrained("", trust_remote_code=True).to("cuda") model = AutoModelForSentenceEmbedding(model, tokenizer) tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') sentences = ["This is an example sentence", "Each sentence is converted"] encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=1024, return_tensors='pt').to("cuda") embeddings = model(**encoded_input) print(embeddings) print(embeddings.shape) ``` ## Other details ### Training This model has been trained on 6.4M randomly sampled pairs of sentences/paragraphs from the same training set that Sentence Transformers models use. Details of the training set [here](https://huggingface.co./sentence-transformers/all-mpnet-base-v2#training-data). The training (along with hyperparameters), inference and data loading scripts can all be found in [this Github repository](https://github.com/shreyansh26/Long-Context-Biencoder). ### Evaluations We ran the model on a few retrieval based benchmarks (CQADupstackEnglishRetrieval, DBPedia, MSMARCO, QuoraRetrieval) and the results are [here](https://github.com/shreyansh26/Long-Context-Biencoder/tree/master/models/results/6M_results).