""" transformer based model, but with few minimal tweaks trained a 2.5billion parameters model with current set configurations """ import torch import json import os current_directory = os.path.dirname(os.path.abspath(__file__)) os.chdir(current_directory) import torch.nn as nn from torch.nn import functional as F with open('config_enigma.json', 'r', encoding='utf-8') as file: params = json.load(file) batch_size = params['batch_size'] block_size = params['block_size'] n_head = params['n_head'] d_model = params['d_model'] n_layers = params['n_layer'] dropout = params['dropout'] norm_eps = params['norm_eps'] device = 'cuda' if torch.cuda.is_available() else 'cpu' class AttentionHead(nn.Module): """ initialize a single head of self attention. Args: - d_model (int): dimensionality of the model's hidden layers - head_size (int): dimensionality of each attention head - dropout (float): dropout probability - block_size (int): the maximum sequence length for positional encoding """ def __init__(self, d_model, head_size, dropout, block_size): super().__init__() self.key = nn.Linear(d_model, head_size, bias=True) self.query = nn.Linear(d_model, head_size, bias=True) self.value = nn.Linear(d_model, head_size, bias=False) self.dropout = nn.Dropout(dropout) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) self.rel_pos_emb = nn.Parameter(torch.randn(block_size, block_size, head_size)) def forward(self, x, mask=False): """ forward pass of a single attention head. Args: - x (Tensor): input tensor. - mask (bool): flag indicating whether to apply masking Returns: - out (Tensor): output tensor after self attention """ B, T, C = x.shape key = self.key(x) query = self.query(x) scores = torch.matmul(query, key.transpose(-2, -1)) / (key.shape[-1] ** -0.5) rel_pos_scores = torch.einsum('btc,tvc->btv', query, self.rel_pos_emb[:T, :T]) scores += rel_pos_scores if mask: scores = scores.masked_fill(self.tril[:T, :T] == 0, float('-inf')) weights = F.softmax(scores, dim=-1) weights = self.dropout(weights) value = self.value(x) out = torch.matmul(weights, value) return out class MultiHeadAttention(nn.Module): """ initialize a multi-head attention module. Args: - d_model (int): dimensionality of the model's hidden layers - n_head (int): no of attention heads - dropout (float): dropout probability - block_size (int): context length """ def __init__(self, d_model, n_head, dropout, block_size): head_size = d_model // n_head super().__init__() self.heads = nn.ModuleList([AttentionHead(d_model=d_model, dropout=dropout, head_size=head_size, block_size=block_size) for _ in range(n_head)]) self.proj = nn.Linear(n_head * head_size, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, mask): """ forward pass of the multi-head attention module Args: - x (Tensor): input tensor - mask (bool): flag indicating whether to apply masking Returns: - out (Tensor): output tensor after multi-head attention """ out = torch.cat([h(x, mask=mask) for h in self.heads], dim=-1) out = self.dropout(self.proj(out)) return out class FeedForward(nn.Module): """ initialize a feedforward network module Args: - d_model (int): the dimensionality of the model's hidden layers - dropout (float): dropout probability """ def __init__(self, d_model, dropout): super().__init__() self.net = nn.Sequential( nn.Linear(d_model, 10*d_model), nn.GELU(), nn.Linear(10*d_model, d_model), nn.Dropout(dropout) ) def forward(self, x): """ forward pass of the feedforward network module Args: - x (Tensor): input tensor Returns: - out (Tensor): output tensor after passing through the feedforward network """ return self.net(x) class EncoderNetwork(nn.Module): """ initialize an encoder network module Args: - d_model (int): dimensionality of the model's hidden layers - n_head (int): no of attention heads in multi-head attention layers - norm_eps (float): epsilon value for layer normalization - dropout (float): dropout probability - block_size (int): the maximum sequence length for positional encoding """ def __init__(self, d_model, n_head, norm_eps, dropout, block_size): super().__init__() self.s_att = MultiHeadAttention(n_head=n_head, d_model=d_model, dropout=dropout, block_size=block_size) self.ffwd = FeedForward(d_model, dropout) self.dropout = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model, eps=norm_eps) self.norm2 = nn.LayerNorm(d_model, eps=norm_eps) def forward(self, src): """ forward pass of the encoder network module. Args: - src (Tensor): input tensor representing source data Returns: - src (Tensor): output tensor after passing through the encoder network """ src2 = self.s_att(src, mask=False) src = src + self.dropout(src2) src = self.norm1(src) src2 = self.ffwd(src) src = src + self.dropout(src2) src = self.norm2(src) return src class DecoderNetwork(nn.Module): """ initialize a decoder network module Args: - d_model (int): dimensionality of the model's hidden layers - n_head (int): no of attention heads in multi-head attention layers - norm_eps (float): epsilon value for layer normalization - dropout (float): dropout probability - block_size (int): the maximum sequence length for positional encoding """ def __init__(self, d_model, n_head, norm_eps, dropout, block_size): super().__init__() self.s_att = MultiHeadAttention(n_head=n_head, d_model=d_model, dropout=dropout, block_size=block_size) self.ffwd = FeedForward(d_model, dropout) self.dropout = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model, eps=norm_eps) self.norm2 = nn.LayerNorm(d_model, eps=norm_eps) def forward(self, src, att): """ forward pass of the decoder network module. Args: - src (Tensor): input tensor, same as the encoder's inputs - trg (Tensor): encoder's attention matrix Returns: - src_f (Tensor): final output tensor """ src2 = self.s_att(src, mask=True) src = src + self.dropout(src2) src = src + self.norm1(src) att = src + att att2 = self.s_att(att, mask=False) att2 = att + self.dropout(att2) trg = att2 + self.norm1(att2) src_f2 = self.ffwd(self.norm2(trg)) src_f = src_f + self.dropout(src_f2) src_f = self.norm2(src_f) return src_f class Transformer(nn.Module): """ initialize a Transformer model Args: - vocab_size (int): size of the vocabulary - d_model (int): dimensionality of the model's hidden layers - block_size (int): maximum sequence length for positional encoding/context length - n_layers (int): number of encoder and decoder layers in the Transformer - n_head (int): number of attention heads in multi-head attention layers - norm_eps (float): epsilon value for layer normalization - dropout (float): dropout probability """ def __init__(self, vocab_size): super().__init__() self.block_size = block_size self.toked_model = nn.Embedding(vocab_size, d_model) self.pos_encod = nn.Embedding(block_size, d_model) self.enc_layer = nn.ModuleList([EncoderNetwork(n_head=n_head, norm_eps=norm_eps, block_size=block_size, dropout=dropout, d_model=d_model) for _ in range(n_layers)]) self.dec_layer = nn.ModuleList([DecoderNetwork(n_head=n_head, norm_eps=norm_eps, block_size=block_size, dropout=dropout, d_model=d_model) for _ in range(n_layers)]) self.norm_final = nn.LayerNorm(d_model) self.linear_final = nn.Linear(d_model, vocab_size) self.dropout = nn.Dropout(dropout) self.apply(self._init_weights) def _init_weights(self, module): """ initialize weights of linear and embedding layers Args: - module (nn.Module): the module to initialize weights for """ if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias.data) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): """ forward pass of the transformer model Args: - idx (Tensor): input tensor representing token indices - targets (Tensor): target tensor for computing loss during training Returns: - logits (Tensor): output logits from the final linear layer - loss (Tensor): optional. computed cross-entropy loss if targets are provided, else None """ B, T = idx.shape toked_model = self.toked_model(idx) pos_encod = self.pos_encod(torch.arange(T, device=device)) x = toked_model + pos_encod for layer in self.enc_layer: x_out = layer(x) for layer in self.dec_layer: x_final = layer(x, x_out) x_final = self.norm_final(x_final) logits = self.linear_final(x_final) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens, temperature=1.0, top_k=0): """ generate new tokens using the trained model Args: - idx (Tensor): input tensor representing initial token indices - max_new_tokens (int): max no of new tokens to generate - temperature (float): softmax temperature for sampling - top_k (int): no of top tokens to consider in sampling Returns: - generated_tokens (list): list of generated token indices """ generated_tokens = [] for _ in range(max_new_tokens): idx_cond = idx[:, -self.block_size:] logits, _ = self(idx_cond) logits = logits[:, -1, :] scaled_logits = logits / temperature if top_k > 0: scaled_logits = self._top_k_filtering(scaled_logits, top_k) probs = F.softmax(scaled_logits, dim=-1) sampled_idx = torch.multinomial(probs, num_samples=1) generated_tokens.append(sampled_idx.item()) idx = torch.cat((idx, sampled_idx), dim=1) return generated_tokens def generate_masked_tokens(self, idx, masked_indices, temperature=1.0, top_k=0): """ Generate predictions for masked tokens using the trained model. Args: - idx (Tensor): input tensor representing token indices - masked_indices (Tensor): tensor of indices indicating masked positions - temperature (float): softmax temperature for sampling - top_k (int): no of top tokens to consider in sampling Returns: - predicted_tokens (Tensor): tensor of predicted token indices """ B, T = idx.shape toked_model = self.toked_model(idx) pos_encod = self.pos_encod(torch.arange(T, device=device)) x = toked_model + pos_encod for layer in self.enc_layer: x_out = layer(x) for layer in self.dec_layer: x_final = layer(x, x_out) x_masked = x_final.clone() x_masked[masked_indices] = self.toked_model(torch.tensor([6], device=device)) x_masked = self.norm_final(x_masked) logits = self.linear_final(x_masked) masked_logits = logits[masked_indices].view(-1, logits.size(-1)) scaled_logits = masked_logits / temperature if top_k > 0: scaled_logits = self._top_k_filtering(scaled_logits, top_k) probs = F.softmax(scaled_logits, dim=-1) predicted_indices = torch.argmax(probs, dim=-1) return predicted_indices def _top_k_filtering(self, logits, top_k): """ filter logits to keep only the top-k tokens Args: - logits (Tensor): input tensor representing unscaled logits - top_k (int): no of top tokens to keep Returns: - filtered_logits (Tensor): filtered logits with only top-k tokens remaining """ values, indices = torch.topk(logits, top_k, dim=-1) min_value = values[:, -1].unsqueeze(-1).expand_as(logits) filtered_logits = torch.where(logits < min_value, torch.ones_like(logits) * -float('inf'), logits) return filtered_logits