File size: 5,814 Bytes
484d56b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
  this isn't a bert based model, i just liked the name and named it
  --> decoder-only model, uses RMS normalization and GELU activation function
  --> one masked-attention and other unmasked
  --> attention layers have relational positional-embeddings
"""

import json
with open('config.json', 'r', encoding='utf-8') as file:
  params = json.load(file)

# required parameters
block_size = params['block_size']
d_model = params['d_model']
n_head = params['n_heads']
n_layers = params['n_layers']
learning_rate = params['learning_rate']
dropout = params['dropout']
norm_eps = params['norm_eps']

import torch
import torch.nn as nn
from torch.nn import functional as F
device = 'cuda' if torch.cuda.is_available() else 'cpu'

class RMSNorm(nn.Module):
  def __init__(self, dim: int, eps: float = 1e-6):
    super().__init__()
    self.eps = eps
    self.weight = nn.Parameter(torch.ones(dim))
    
  def _norm(self, x):
    return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

  def forward(self, x):
    output = self._norm(x.float()).type_as(x)
    return output * self.weight

class SingleHead(nn.Module):
  def __init__(self,
      head_size: int,
      d_model: int,
      block_size: int,
      dropout: float):
    super().__init__()
    self.key = nn.Linear(d_model, head_size, bias=True)
    self.query = nn.Linear(d_model, head_size, bias=True)
    self.value = nn.Linear(d_model, head_size, bias=True)
    self.dropout = nn.Dropout(dropout)
    self.rel_pos_embd = nn.Parameter(torch.randn(block_size, block_size, head_size))
    self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
  
  def forward(self, x: torch.Tensor, mask: bool= False):
    B, T, C = x.shape
    key = self.key(x)
    query = self.query(x)
    scores = torch.matmul(query ,key.transpose(-2, -1)) / (key.shape[-1]**-0.5)

    if mask is True:
      scores = scores.masked_fill(self.tril[:T, :T] == 0, float('-inf'))

    rel_pos_scores = torch.einsum('btc,tvc->btv', query, self.rel_pos_embd[:T, :T])
    scores = scores + rel_pos_scores

    att_mat = F.softmax(scores, dim=-1)
    att_mat = self.dropout(att_mat)
    value = self.value(x)
    output = torch.matmul(att_mat, value)
    return output

class MultiHeadAttention(nn.Module):
  def __init__(self,
      d_model: int,
      block_size: int,
      n_head : int,
      dropout: float):
    head_size = d_model // n_head
    super().__init__()
    self.heads = nn.ModuleList([SingleHead(d_model=d_model, dropout=dropout, block_size=block_size, head_size=head_size) for _ in range(n_head)])
    self.projection = nn.Linear(d_model, d_model)
    self.dropout = nn.Dropout(dropout)
  
  def forward(self, x: torch.Tensor, mask: bool):
    out = torch.cat([h(x, mask) for h in self.heads], dim=-1)
    out = self.dropout(self.projection(out))
    return out

class FeedForward(nn.Module):
  def __init__(self, d_model, dropout):
    super().__init__()
    self.net = nn.Sequential(
      nn.Linear(d_model, 5 * d_model),
      nn.GELU(),
      nn.Linear(5 * d_model, d_model),
      nn.Dropout(dropout),
      )

  def forward(self, x: torch.Tensor):
    return self.net(x)

class DecoderBlock(nn.Module):
  def __init__(self, d_model: int,
        block_size: int,
        n_head: int,
        norm_eps: float,
        dropout: float):
    super().__init__()
    self.self_att = MultiHeadAttention(n_head=n_head, d_model=d_model, dropout=dropout, block_size=block_size)
    self.ffwd = FeedForward(d_model, dropout)
    self.dropout = nn.Dropout(dropout)
    self.norm = RMSNorm(d_model, eps=norm_eps)
  
  def forward(self, x: torch.Tensor):
    x_out = self.self_att(self.norm(x), mask=True)
    x_out = x + self.dropout(x_out)
    del x

    x = self.self_att(self.norm(x_out, mask=False))
    x = x_out + self.dropout(x)
    del x_out

    x_out = self.ffwd(self.norm(x))
    x_out = x + self.dropout(x_out)
    del x
    
    return x_out

class Transformer(nn.Module):
  def __init__(self, vocab_size: int):
    super().__init__()
    self.block_size = block_size
    self.token_embeddings = nn.Embedding(vocab_size, d_model)
    self.decoder = nn.Sequential(*[DecoderBlock(n_head=n_head, d_model=d_model, dropout=dropout, norm_eps=norm_eps, block_size=block_size) for _ in range(n_layers)])
    self.norm_final = RMSNorm(d_model, eps=norm_eps)
    self.linear_final = nn.Linear(d_model, vocab_size)
    self.dropout = nn.Dropout(dropout)
    self.apply(self._init_weights)
  
  def _init_weights(self, module):
    if isinstance(module, nn.Linear):
      torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
      if module.bias is not None:
        torch.nn.init.zeros_(module.bias.data)
    elif isinstance(module, nn.Embedding):
      torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    
  def forward(self, idx, targets=None):
    B, T = idx.shape
    x = self.token_embeddings(idx)
    x = self.decoder(x)
    logits = self.linear_final(self.norm_final(x))

    if targets is None:
      loss = None

    else:
      B, T, C = logits.shape
      logits = logits.view(B*T, C)
      targets = targets.view(B*T)
      loss = F.cross_entropy(logits, targets)

    return logits, loss

  @torch.no_grad()
  def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
    self.eval()
    for _ in range(max_new_tokens):
    
      idx_cond = idx if idx.size(1) <= self.block_size else idx[:, -self.block_size:]
      logits, _ = self(idx_cond)
      logits = logits[:, -1, :] / temperature
    
      if top_k is not None:
        v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
        logits[logits < v[:, [-1]]] = -float('Inf')
      
      probs = F.softmax(logits, dim=-1)
      idx_next = torch.multinomial(probs, num_samples=1)
      idx = torch.cat((idx, idx_next), dim=1)

      return idx