File size: 13,424 Bytes
484d56b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#include <torch/torch.h>
#include <iostream>
#include <vector>

// Define device
torch::Device device(torch::kCUDA);

// Define constants
const int batch_size = 8;
const int block_size = 32;
const int max_iters = 1000;
const int eval_interval = 50;
const int eval_iters = 5;
const int d_model = 256;
const int n_layer = 16;
const int n_head = 12;
const float dropout = 0.2;
const float norm_eps = 1e-5;
const int vocab_size = 5;

// sample data
torch::Tensor train_data = torch::rand({1000, block_size});
torch::Tensor val_data = torch::rand({500, block_size});

// Data loading function
std::pair<torch::Tensor, torch::Tensor> get_batch(const std::string& split) {
    torch::Tensor data = (split == "train") ? train_data : val_data;
    torch::Tensor ix = torch::randint(data.size(0) - block_size, {batch_size});
    torch::Tensor x = torch::empty({batch_size, block_size});
    torch::Tensor y = torch::empty({batch_size, block_size});
    for (int i = 0; i < batch_size; ++i) {
        x[i] = data.index({ix[i], ix[i] + block_size});
        y[i] = data.index({ix[i] + 1, ix[i] + block_size + 1});
    }
    return std::make_pair(x.to(device), y.to(device));
}

// Custom classes and functions
class SWiGLU : public torch::nn::Module {
public:
    SWiGLU() {}

    torch::Tensor forward(torch::Tensor x) {
        torch::Tensor sigmoid_output = torch::sigmoid(x);
        torch::Tensor relu_output = torch::relu(x);
        torch::Tensor out = sigmoid_output * relu_output + (1 - sigmoid_output) * x;
        return out;
    }
};

class UnMaskedHeadImpl : public torch::nn::Module {
public:
    UnMaskedHeadImpl(int d_model, int head_size, float dropout)
        : key(register_module("key", torch::nn::Linear(d_model, head_size))),
          query(register_module("query", torch::nn::Linear(d_model, head_size))),
          value(register_module("value", torch::nn::Linear(d_model, head_size))),
          dropout(torch::nn::Dropout(dropout)) {
        register_module("dropout", dropout);
    }

    torch::Tensor forward(torch::Tensor x) {
        torch::Tensor key_out = key->forward(x);
        torch::Tensor query_out = query->forward(x);
        
        torch::Tensor weights = query_out.matmul(key_out.transpose(-2, -1)) * std::sqrt(key_out.size(-1));
        weights = torch::softmax(weights, -1);
        weights = dropout(weights);

        torch::Tensor value_out = value->forward(x);
        torch::Tensor out = weights.matmul(value_out);
        return out;
    }

private:
    torch::nn::Linear key, query, value;
    torch::nn::Dropout dropout;
};

TORCH_MODULE(UnMaskedHead);

class MaskedHeadImpl : public torch::nn::Module {
public:
    MaskedHeadImpl(int head_size, float dropout, int d_model)
        : key(register_module("key", torch::nn::Linear(d_model, head_size))),
          query(register_module("query", torch::nn::Linear(d_model, head_size))),
          value(register_module("value", torch::nn::Linear(d_model, head_size))),
          dropout(torch::nn::Dropout(dropout)) {
        register_buffer("tril", torch::tril(torch::ones(block_size, block_size)));
    }

    torch::Tensor forward(torch::Tensor x) {
        torch::Tensor key_out = key->forward(x);
        torch::Tensor query_out = query->forward(x);
        
        torch::Tensor weights = query_out.matmul(key_out.transpose(-2, -1)) * std::sqrt(key_out.size(-1));
        weights = weights.masked_fill(tril[:x.size(1), :x.size(1)] == 0, std::numeric_limits<float>::lowest());
        weights = torch::softmax(weights, -1);
        weights = dropout(weights);

        torch::Tensor value_out = value->forward(x);
        torch::Tensor out = weights.matmul(value_out);
        return out;
    }

private:
    torch::nn::Linear key, query, value;
    torch::nn::Dropout dropout;
    torch::Tensor tril;
};

TORCH_MODULE(MaskedHead);

class MultiUnMaskedImpl : public torch::nn::Module {
public:
    MultiUnMaskedImpl(int d_model, int n_head, float dropout)
        : proj(register_module("proj", torch::nn::Linear(n_head * (d_model / n_head), d_model))),
          dropout(torch::nn::Dropout(dropout)) {
        for (int i = 0; i < n_head; ++i) {
            heads.push_back(register_module("head" + std::to_string(i), UnMaskedHead(d_model, d_model / n_head, dropout)));
        }
    }

    torch::Tensor forward(torch::Tensor x) {
        std::vector<torch::Tensor> head_outputs;
        for (auto& head : heads) {
            head_outputs.push_back(head->forward(x));
        }
        torch::Tensor out = torch::cat(head_outputs, -1);
        out = dropout(out);
        out = proj(out);
        return out;
    }

private:
    torch::nn::Linear proj;
    torch::nn::Dropout dropout;
    std::vector<UnMaskedHead> heads;
};

TORCH_MODULE(MultiUnMasked);

class MultiMaskedImpl : public torch::nn::Module {
public:
    MultiMaskedImpl(int d_model, int n_head, float dropout)
        : proj(register_module("proj", torch::nn::Linear(n_head * (d_model / n_head), d_model))),
          dropout(torch::nn::Dropout(dropout)) {
        for (int i = 0; i < n_head; ++i) {
            heads.push_back(register_module("head" + std::to_string(i), MaskedHead(d_model, d_model / n_head, dropout)));
        }
    }

    torch::Tensor forward(torch::Tensor x) {
        std::vector<torch::Tensor> head_outputs;
        for (auto& head : heads) {
            head_outputs.push_back(head->forward(x));
        }
        torch::Tensor out = torch::cat(head_outputs, -1);
        out = dropout(out);
        out = proj(out);
        return out;
    }

private:
    torch::nn::Linear proj;
    torch::nn::Dropout dropout;
    std::vector<MaskedHead> heads;
};

TORCH_MODULE(MultiMasked);

class FeedForwardImpl : public torch::nn::Module {
public:
    FeedForwardImpl(int d_model, float dropout)
        : net(register_module("net", torch::nn::Sequential(
            torch::nn::Linear(d_model, 4 * d_model),
            torch::nn::GELU(),
            torch::nn::Linear(4 * d_model, d_model),
            torch::nn::Dropout(dropout)
        ))) {}

    torch::Tensor forward(torch::Tensor x) {
        return net->forward(x);
    }

private:
    torch::nn::Sequential net;
};

TORCH_MODULE(FeedForward);

class BlockImpl : public torch::nn::Module {
public:
    BlockImpl(int d_model, int n_head, float norm_eps, float dropout)
        : sa_masked(MultiMasked(d_model, n_head, dropout)),
          sa_unmasked(MultiUnMasked(d_model, n_head, dropout)),
          ffwd(FeedForward(d_model, dropout)),
          norm1(torch::nn::LayerNorm(torch::nn::LayerNormOptions({d_model}).eps(norm_eps))),
          norm2(torch::nn::LayerNorm(torch::nn::LayerNormOptions({d_model}).eps(norm_eps))) {}

    torch::Tensor forward(torch::Tensor x) {
        torch::Tensor x2 = x + sa_unmasked->forward(norm1->forward(x));
        x = x2 + ffwd->forward(norm2->forward(x2));

        x2 = x + sa_masked->forward(norm1->forward(x));
        x = x2 + ffwd->forward(norm2->forward(x2));

        return x;
    }

private:
    MultiMasked sa_masked;
    MultiUnMasked sa_unmasked;
    FeedForward ffwd;
    torch::nn::LayerNorm norm1, norm2;
};

TORCH_MODULE(Block);

class EnigmaImpl : public torch::nn::Module {
public:
    EnigmaImpl(int vocab_size, int block_size, int d_model, int n_layer, int n_head, float dropout, float norm_eps)
        : toked_model(register_module("toked_model", torch::nn::Embedding(vocab_size, d_model))),
          pos_encod(register_module("pos_encod", torch::nn::Embedding(block_size, d_model))),
          norm_final(torch::nn::LayerNorm(torch::nn::LayerNormOptions({d_model}).eps(norm_eps))),
          linear_final(register_module("linear_final", torch::nn::Linear(d_model, vocab_size))) {
        for (int i = 0; i < n_layer; ++i) {
            block_layers.push_back(register_module("block" + std::to_string(i), Block(d_model, n_head, norm_eps, dropout)));
        }
        register_buffer("block_size", torch::tensor(block_size));
        _init_weights(this);
    }

    void _init_weights(torch::nn::Module* module) {
        auto parameters = module->named_parameters();
        for (auto& param : parameters) {
            if (param.key().find("weight") != std::string::npos) {
                torch::nn::init::normal_(param.value(), 0.0, 0.02);
            } else if (param.key().find("bias") != std::string::npos) {
                torch::nn::init::zeros_(param.value());
            }
        }
    }

    std::pair<torch::Tensor, torch::Tensor> forward(torch::Tensor idx, torch::Tensor targets=torch::Tensor()) {
        torch::Tensor toked_model_out = toked_model->forward(idx);
        torch::Tensor pos_encod_out = pos_encod->forward(torch::arange(idx.size(1)));
        torch::Tensor x = toked_model_out + pos_encod_out;

        for (auto& block : block_layers) {
            x = block->forward(x);
        }

        torch::Tensor logits = linear_final->forward(norm_final->forward(x));

        if (!targets.numel()) {
            return {logits, torch::Tensor()};
        } else {
            logits = logits.view({-1, logits.size(-1)});
            targets = targets.view({-1});
            torch::Tensor loss = torch::nn::functional::cross_entropy(logits, targets);
            return {logits, loss};
        }
    }

    std::vector<std::vector<std::pair<torch::Tensor, float>>> complex_generate(torch::Tensor idx, int max_new_tokens, float temperature=1.0, int top_k=3, int beam_width=5) {
        std::vector<std::vector<std::pair<torch::Tensor, float>>> completed_beams;
        torch::Tensor current_idx = idx.clone();
        std::vector<std::pair<torch::Tensor, float>> beam = {std::make_pair(current_idx, 0.0)};

        for (int i = 0; i < max_new_tokens; ++i) {
            std::vector<std::pair<torch::Tensor, float>> new_beam;

            for (auto& beam_item : beam) {
                torch::Tensor& current_idx = beam_item.first;
                torch::Tensor logits, loss;
                std::tie(logits, loss) = forward(current_idx);
                logits = logits.index({torch::indexing::Slice(), -1}); // Get last token predictions

                // Apply softmax and temperature
                torch::Tensor probs = torch::nn::functional::softmax(logits / temperature, -1);
                
                // Top-k sampling
                if (top_k > 0) {
                    probs = top_k_filtering(probs, top_k);
                }

                // Sample from the distribution
                torch::Tensor sampled_idx = torch::multinomial(probs, beam_width, true);

                for (int j = 0; j < beam_width; ++j) {
                    torch::Tensor new_idx = torch::cat({current_idx, sampled_idx.index({torch::indexing::Slice(), j})}, 1);
                    torch::Tensor new_log_prob = beam_item.second + torch::log(probs.index({torch::indexing::Slice(), sampled_idx.index({torch::indexing::Slice(), j})}));
                    new_beam.push_back(std::make_pair(new_idx, new_log_prob.item()));
                }
            }

            // Sort new beam by log probabilities
            std::sort(new_beam.begin(), new_beam.end(), [](const std::pair<torch::Tensor, float>& a, const std::pair<torch::Tensor, float>& b) {
                return a.second > b.second;
            });

            // Only keep top beams
            beam = std::vector<std::pair<torch::Tensor, float>>(new_beam.begin(), new_beam.begin() + beam_width);
        }

        completed_beams.push_back(beam);
        return completed_beams;
    }

    std::vector<std::vector<std::pair<torch::Tensor, float>>> top_k_filtering(torch::Tensor logits, int top_k) {
        torch::Tensor top_values, top_indices;
        std::tie(top_values, top_indices) = torch::topk(logits, top_k, -1);

        torch::Tensor min_value = torch::index_select(top_values, -1, torch::tensor({top_k-1}));
        torch::Tensor filtered_logits = torch::where(logits < min_value, torch::full_like(logits, -std::numeric_limits<float>::infinity()), logits);
        return filtered_logits;
    }

private:
    torch::nn::Embedding toked_model, pos_encod;
    std::vector<Block> block_layers;
    torch::nn::LayerNorm norm_final;
    torch::nn::Linear linear_final;
    int block_size;
};

TORCH_MODULE(Enigma);

int main() {
    // Set seed
    torch::manual_seed(1400);

    // Create model
    Enigma model(vocab_size, block_size, d_model, n_layer, n_head, dropout, norm_eps);
    model->to(device);

    // Define optimizer
    torch::optim::AdamW optimizer(model->parameters(), torch::optim::AdamWOptions(learning_rate));

    // Training loop
    std::vector<float> train_losses, val_losses;
    for (int iter = 0; iter < max_iters; ++iter) {
        if (iter % eval_interval == 0 || iter == max_iters - 1) {
            // Evaluate and print losses
            auto losses = estimate_loss();
            std::cout << "step " << iter << ": train loss " << losses["train"] << ", val loss " << losses["val"] << std::endl;
            
            // Save losses for plotting
            train_losses.push_back(losses["train"]);
            val_losses.push_back(losses["val"]);
        }

        // Get batch, forward pass, loss calculation, backward pass, optimizer step
        auto [xb, yb] = get_batch("train");
        torch::Tensor logits, loss;
        std::tie(logits, loss) = model->forward(xb, yb);

        optimizer.zero_grad();
        loss.backward();
        optimizer.step();
    }

    return 0;
}