File size: 6,443 Bytes
f44acc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
  simple BERT architecture model, paired with one more layer of 
  masked self-attention, to predict next token
"""

import torch
import os
current_directory = os.path.dirname(os.path.abspath(__file__))
os.chdir(current_directory)

import torch.nn as nn
from torch.nn import functional as F

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# hyperparams
batch_size = 8
block_size = 32
max_iters = 10
eval_interval = 10
learning_rate = 3e-4
eval_iters = 5
d_model = 256
n_layer = 16
n_head = 12
dropout = 0.2
norm_eps = 1e-5

class SWiGLU(nn.Module):
  """ SWiGLU(x) = σ(x) ⊙ ReLU(x) + (1−σ(x)) ⊙ x """

  def forward(self, x):
    sigmoid_output = torch.sigmoid(x)
    relu_output = F.relu(x)
    out = sigmoid_output * relu_output + (1 - sigmoid_output) * x
    
    return out

class UnMaskedHead(nn.Module):
  """ single head of self attention """
  def __init__(self, d_model, head_size, dropout):
    super().__init__()
    self.key = nn.Linear(d_model, head_size, bias=True)
    self.query = nn.Linear(d_model, head_size, bias=True) 
    self.value = nn.Linear(d_model, head_size, bias=True)
    self.dropout = nn.Dropout(dropout)
  
  def forward(self, x):
    B, T, C = x.shape
    key = self.key(x)
    query = self.query(x)

    weights = query @ key.transpose(-2, -1) * key.shape[-1]**-0.5
    weights = F.softmax(weights, dim=-1)
    weights = self.dropout(weights)

    value = self.value(x)
    out = weights @ value
    return out

class MaskedHead(nn.Module):
  """ one head of self-attention """
  def __init__(self, head_size, dropout, d_model):
    super().__init__()
    self.key = nn.Linear(d_model, head_size, bias=True)
    self.query = nn.Linear(d_model, head_size, bias=True)
    self.value = nn.Linear(d_model, head_size, bias=True)
    self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

    self.dropout = nn.Dropout(dropout)

  def forward(self, x):
    B,T,C = x.shape
    k = self.key(x)
    q = self.query(x)
    
    wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
    wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
    wei = F.softmax(wei, dim=-1) # (B, T, T)
    wei = self.dropout(wei)
    
    v = self.value(x)
    out = wei @ v
    return out
  
class MultiUnMasked(nn.Module):
  def __init__(self, d_model, n_head, dropout):
    head_size = d_model // n_head
    super().__init__()
    self.heads = nn.ModuleList([UnMaskedHead(d_model=d_model, dropout=dropout, head_size=head_size) for _ in range(n_head)])
    self.proj = nn.Linear(n_head * head_size, d_model)
    self.dropout = nn.Dropout(dropout)
  
  def forward(self, x):
    out = torch.cat([h(x) for h in self.heads], dim=-1)
    out = self.dropout(self.proj(out))
    return out

class MultiMasked(nn.Module):
  def __init__(self, d_model, n_head, dropout):
    head_size = d_model // n_head
    super().__init__()
    self.heads = nn.ModuleList([MaskedHead(d_model=d_model, dropout=dropout, head_size=head_size) for _ in range(n_head)])
    self.proj = nn.Linear(n_head * head_size, d_model)
    self.dropout = nn.Dropout(dropout)
  
  def forward(self, x):
    out = torch.cat([h(x) for h in self.heads], dim=-1)
    out = self.dropout(self.proj(out))
    return out

class FeedForward(nn.Module):
  def __init__(self, d_model, dropout):
    super().__init__()
    self.net = nn.Sequential(
      nn.Linear(d_model, 4*d_model),
      nn.GELU(),
      nn.Linear(4*d_model, d_model),
      nn.Dropout(dropout)
    )
   
  def forward(self, x):
    return self.net(x)

class Block(nn.Module):
  def __init__(self, d_model, n_head, norm_eps, dropout):
    super().__init__()
    self.sa_masked = MultiMasked(n_head=n_head, d_model=d_model, dropout=dropout)
    self.sa_unmasked = MultiUnMasked(n_head=n_head, d_model=d_model, dropout=dropout)
    self.ffwd = FeedForward(d_model, dropout=dropout)
    self.norm1 = nn.LayerNorm(d_model, eps=norm_eps)
    self.norm2 = nn.LayerNorm(d_model, eps=norm_eps)
  
  def forward(self, x):
    x2 = x + self.sa_unmasked(self.norm1(x))
    x = x2 + self.norm2(self.ffwd(x2))

    x2 = x + self.sa_masked(self.norm1(x))
    x = x2 + self.norm2(self.ffwd(x2))
    return x

class EnigmaBERT(nn.Module):
  def __init__(self, vocab_size):
    super().__init__()
    self.toked_model = nn.Embedding(vocab_size, d_model)
    self.pos_encod = nn.Embedding(block_size, d_model)
    self.block = nn.Sequential(*[Block(d_model=d_model, dropout=dropout, norm_eps=norm_eps, n_head=n_head) for _ in range(n_layer)])
    self.norm_final = nn.LayerNorm(d_model, eps=norm_eps)
    self.linear_final = nn.Linear(d_model, vocab_size)
    self.apply(self._init_weights)
  

  def _init_weights(self, module):
    if isinstance(module, nn.Linear):
      torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
      if module.bias is not None:
        torch.nn.init.zeros_(module.bias.data)
    elif isinstance(module, nn.Embedding):
      torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
    
  def forward(self, idx, targets=None):
    B, T = idx.shape

    toked_model = self.toked_model(idx)
    pos_encod = self.pos_encod(torch.arange(T, device=device))
    x = toked_model + pos_encod
    x = self.block(x)
    x = self.norm_final(x)
    logits = self.linear_final(x)

    if targets is None:
      loss = None
    
    else:
      B, T, C = logits.shape
      logits = logits.view(B*T, C)
      targets = targets.view(B*T)
      loss = F.cross_entropy(logits, targets)
    
    return logits, loss
  
  def generate(self, idx, max_new_tokens, temperature=1.0, top_k=0):
    generated_tokens = []

    for _ in range(max_new_tokens):
      idx_cond = idx[:, -block_size:]
      logits, _ = self(idx_cond)
      logits = logits[:, -1, :]

      scaled_logits = logits / temperature
      if top_k > 0:
        scaled_logits = self._top_k_filtering(scaled_logits, top_k)

      probs = F.softmax(scaled_logits, dim=-1)
      sampled_idx = torch.multinomial(probs, num_samples=1)
      generated_tokens.append(sampled_idx.item())
      idx = torch.cat((idx, sampled_idx), dim=1)

    return generated_tokens


  def _top_k_filtering(self, logits, top_k):
    values, indices = torch.topk(logits, top_k, dim=-1)
    min_value = values[:, -1].unsqueeze(-1).expand_as(logits)
    filtered_logits = torch.where(logits < min_value, torch.ones_like(logits) * -float('inf'), logits)
    return filtered_logits