File size: 6,874 Bytes
7f4e854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import json
with open('config.json', 'r', encoding='utf-8') as file:
params = json.load(file)
# required parameters
block_size = params['block_size']
d_model = params['d_model']
n_head = params['n_heads']
n_layers = params['n_layers']
learning_rate = params['learning_rate']
dropout = params['dropout']
norm_eps = params['norm_eps']
import torch
import torch.nn as nn
from torch.nn import functional as F
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class MaskedHead(nn.Module):
def __init__(self,
head_size: int,
d_model: int,
block_size: int,
dropout: float):
super().__init__()
self.key = nn.Linear(d_model, head_size, bias=True)
self.query = nn.Linear(d_model, head_size, bias=True)
self.value = nn.Linear(d_model, head_size, bias=True)
self.dropout = nn.Dropout(dropout)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
def forward(self, x: torch.Tensor):
B, T, C = x.shape
key = self.key(x)
query = self.query(x)
scores = torch.matmul(query ,key.transpose(-2, -1)) / (key.shape[-1]**-0.5)
scores = scores.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
att_mat = F.softmax(scores, dim=-1)
att_mat = self.dropout(att_mat)
value = self.value(x)
output = torch.matmul(att_mat, value)
return output
class UnMaskedHead(nn.Module):
def __init__(self,
head_size: int,
d_model: int,
block_size: int,
dropout: float):
super().__init__()
self.key = nn.Linear(d_model, head_size, bias=True)
self.query = nn.Linear(d_model, head_size, bias=True)
self.value = nn.Linear(d_model, head_size, bias=True)
self.dropout = nn.Dropout(dropout)
self.rel_pos_embd = nn.Parameter(torch.randn(block_size, block_size, head_size))
def forward(self, x: torch.Tensor):
B, T, C = x.shape
key = self.key(x)
query = self.query(x)
scores = torch.matmul(query ,key.transpose(-2, -1)) / (key.shape[-1]**-0.5)
rel_pos_scores = torch.einsum('btc,tvc->btv', query, self.rel_pos_embd[:T, :T])
scores = scores + rel_pos_scores
att_mat = F.softmax(scores, dim=-1)
att_mat = self.dropout(att_mat)
value = self.value(x)
output = torch.matmul(att_mat, value)
return output
class MaskedAttention(nn.Module):
def __init__(self,
d_model: int,
block_size: int,
n_head : int,
dropout: float):
head_size = d_model // n_head
super().__init__()
self.heads = nn.ModuleList([MaskedHead(d_model=d_model, dropout=dropout, block_size=block_size, head_size=head_size) for _ in range(n_head)])
self.projection = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.projection(out))
return out
class UnMaskedAttention(nn.Module):
def __init__(self,
d_model: int,
block_size: int,
n_head : int,
dropout: float):
head_size = d_model // n_head
super().__init__()
self.heads = nn.ModuleList([UnMaskedHead(d_model=d_model, dropout=dropout, block_size=block_size, head_size=head_size) for _ in range(n_head)])
self.projection = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.projection(out))
return out
class FeedForward(nn.Module):
def __init__(self, d_model, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(d_model, 5 * d_model),
nn.GELU(),
nn.Linear(5 * d_model, 5 * d_model),
nn.Dropout(dropout),
nn.GELU(),
nn.Linear(5 * d_model, d_model),
nn.Dropout(dropout),
)
def forward(self, x: torch.Tensor):
return self.net(x)
class DecoderBlock(nn.Module):
def __init__(self, d_model: int,
block_size: int,
n_head: int,
norm_eps: float,
dropout: float):
super().__init__()
self.m_att = MaskedAttention(n_head=n_head, d_model=d_model, dropout=dropout, block_size=block_size)
self.um_att = UnMaskedAttention(n_head=n_head, d_model=d_model, dropout=dropout, block_size=block_size)
self.ffwd = FeedForward(d_model, dropout)
self.dropout = nn.Dropout(dropout)
self.norm = RMSNorm(d_model, eps=norm_eps)
def forward(self, x: torch.Tensor):
x_out = self.m_att(self.norm(x))
x_out = x + self.dropout(x_out)
del x
x = self.um_att(self.norm(x_out))
x = x_out + self.dropout(x)
del x_out
x_out = self.ffwd(self.norm(x))
x_out = x + self.dropout(x_out)
del x
return x_out
class Transformer(nn.Module):
def __init__(self, vocab_size: int):
super().__init__()
self.block_size = block_size
self.token_embeddings = nn.Embedding(vocab_size, d_model)
self.pos_encodings = nn.Embedding(block_size, d_model)
self.decoder = nn.Sequential(*[DecoderBlock(n_head=n_head, d_model=d_model, dropout=dropout, norm_eps=norm_eps, block_size=block_size) for _ in range(n_layers)])
self.norm_final = RMSNorm(d_model, eps=norm_eps)
self.linear_final = nn.Linear(d_model, vocab_size)
self.dropout = nn.Dropout(dropout)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias.data)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.shape
toked_model = self.token_embeddings(idx)
pos_encod = self.pos_encodings(torch.arange(T, device=device))
x = toked_model + pos_encod
x = self.decoder(x)
logits = self.linear_final(self.norm_final(x))
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx: torch.Tensor, max_token: int=10):
for _ in range(max_token):
idx_cond = idx[:, -self.block_size:]
logits = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.argmax(probs, dim=-1)
idx = torch.cat((idx, idx_next), dim=1)
return idx |