File size: 2,359 Bytes
8974112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4484
- Wer: 1.0145

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 50.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.1844        | 3.4   | 500  | 5.2015          | 0.9999 |
| 3.3962        | 6.8   | 1000 | 3.4017          | 1.0002 |
| 2.5433        | 10.2  | 1500 | 1.6884          | 1.0222 |
| 1.5099        | 13.6  | 2000 | 0.7929          | 1.0188 |
| 1.2685        | 17.01 | 2500 | 0.6122          | 1.0191 |
| 1.1844        | 20.41 | 3000 | 0.5434          | 1.0197 |
| 1.0945        | 23.81 | 3500 | 0.5208          | 1.0316 |
| 1.0506        | 27.21 | 4000 | 0.4941          | 1.0139 |
| 1.0199        | 30.61 | 4500 | 0.4736          | 1.0106 |
| 0.9546        | 34.01 | 5000 | 0.4664          | 1.0164 |
| 0.9388        | 37.41 | 5500 | 0.4565          | 1.0085 |
| 0.9125        | 40.81 | 6000 | 0.4636          | 1.0148 |
| 0.8733        | 44.22 | 6500 | 0.4530          | 1.0154 |
| 0.8829        | 47.62 | 7000 | 0.4494          | 1.0152 |


### Framework versions

- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0