from typing import Dict, Any from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection from PIL import Image import requests from io import BytesIO import torch class EndpointHandler(): def __init__(self, path=""): # Ładowanie modelu i procesora self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = AutoModelForZeroShotObjectDetection.from_pretrained(path).to(self.device) self.processor = AutoProcessor.from_pretrained(path) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: # Sprawdzamy, czy dane wejściowe zawierają wymagane pola if "inputs" not in data: return {"error": "Payload must contain 'inputs' key with 'image' and 'text'."} inputs = data["inputs"] if "image" not in inputs or "text" not in inputs: return {"error": "Payload must contain 'image' (base64 or URL) and 'text' (queries)."} # Pobieramy obraz (URL lub Base64) image_data = inputs["image"] if image_data.startswith("http"): # URL response = requests.get(image_data) image = Image.open(BytesIO(response.content)) else: return {"error": "Handler currently supports only URL-based images."} # Pobieramy tekst zapytań text_queries = inputs["text"] if isinstance(text_queries, list): text_queries = ". ".join([t.lower().strip() + "." for t in text_queries]) # Przygotowujemy dane wejściowe processed_inputs = self.processor(images=image, text=text_queries, return_tensors="pt").to(self.device) # Przeprowadzamy inferencję with torch.no_grad(): outputs = self.model(**processed_inputs) # Post-process wyników results = self.processor.post_process_grounded_object_detection( outputs, processed_inputs.input_ids, box_threshold=0.4, text_threshold=0.3, target_sizes=[image.size[::-1]] ) # Zwracamy wyniki return {"detections": results}