Update handler.py
Browse files- handler.py +54 -45
handler.py
CHANGED
@@ -1,45 +1,54 @@
|
|
1 |
-
from typing import Dict, Any
|
2 |
-
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
3 |
-
from PIL import Image
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
self.
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any
|
2 |
+
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
from io import BytesIO
|
6 |
+
import torch
|
7 |
+
|
8 |
+
class EndpointHandler():
|
9 |
+
def __init__(self, path=""):
|
10 |
+
# 艁adowanie modelu i procesora
|
11 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
self.model = AutoModelForZeroShotObjectDetection.from_pretrained(path).to(self.device)
|
13 |
+
self.processor = AutoProcessor.from_pretrained(path)
|
14 |
+
|
15 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
16 |
+
# Sprawdzamy, czy dane wej艣ciowe zawieraj膮 wymagane pola
|
17 |
+
if "inputs" not in data:
|
18 |
+
return {"error": "Payload must contain 'inputs' key with 'image' and 'text'."}
|
19 |
+
|
20 |
+
inputs = data["inputs"]
|
21 |
+
if "image" not in inputs or "text" not in inputs:
|
22 |
+
return {"error": "Payload must contain 'image' (base64 or URL) and 'text' (queries)."}
|
23 |
+
|
24 |
+
# Pobieramy obraz (URL lub Base64)
|
25 |
+
image_data = inputs["image"]
|
26 |
+
if image_data.startswith("http"): # URL
|
27 |
+
response = requests.get(image_data)
|
28 |
+
image = Image.open(BytesIO(response.content))
|
29 |
+
else:
|
30 |
+
return {"error": "Handler currently supports only URL-based images."}
|
31 |
+
|
32 |
+
# Pobieramy tekst zapyta艅
|
33 |
+
text_queries = inputs["text"]
|
34 |
+
if isinstance(text_queries, list):
|
35 |
+
text_queries = ". ".join([t.lower().strip() + "." for t in text_queries])
|
36 |
+
|
37 |
+
# Przygotowujemy dane wej艣ciowe
|
38 |
+
processed_inputs = self.processor(images=image, text=text_queries, return_tensors="pt").to(self.device)
|
39 |
+
|
40 |
+
# Przeprowadzamy inferencj臋
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = self.model(**processed_inputs)
|
43 |
+
|
44 |
+
# Post-process wynik贸w
|
45 |
+
results = self.processor.post_process_grounded_object_detection(
|
46 |
+
outputs,
|
47 |
+
processed_inputs.input_ids,
|
48 |
+
box_threshold=0.4,
|
49 |
+
text_threshold=0.3,
|
50 |
+
target_sizes=[image.size[::-1]]
|
51 |
+
)
|
52 |
+
|
53 |
+
# Zwracamy wyniki
|
54 |
+
return {"detections": results}
|