Hassan Shavarani
commited on
Commit
•
6b897ee
1
Parent(s):
a712666
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
datasets:
|
6 |
+
- CoNLL2003/AIDA
|
7 |
+
- Wikipedia
|
8 |
+
tags:
|
9 |
+
- SpEL
|
10 |
+
- Entity Linking
|
11 |
+
- Structured Prediction
|
12 |
---
|
13 |
+
|
14 |
+
## SpEL (Structured prediction for Entity Linking)
|
15 |
+
SpEL model finetuned on English Wikipedia as well as the training portion of CoNLL2003/AIDA.
|
16 |
+
It is introduced in the paper [SPEL: Structured Prediction for Entity Linking (EMNLP 2023)](https://arxiv.org/abs/2310.14684).
|
17 |
+
The code and data are available in [this repository](https://github.com/shavarani/SpEL).
|
18 |
+
|
19 |
+
## Evaluation Results
|
20 |
+
Entity Linking evaluation results of *SpEL* compared to that of the literature over AIDA test sets:
|
21 |
+
|
22 |
+
| Approach | EL Micro-F1<br/>test-a | EL Micro-F1<br/>test-b | #params<br/>on GPU | speed<br/>sec/doc |
|
23 |
+
|-----------------------------------------------------------------|:----------------------:|:----------------------:|:----------------------------------------:|:-----------------:|
|
24 |
+
| Hoffart et al. (2011) | 72.4 | 72.8 | - | - |
|
25 |
+
| Kolitsas et al. (2018) | 89.4 | 82.4 | 330.7M | 0.097 |
|
26 |
+
| Broscheit (2019) | 86.0 | 79.3 | 495.1M | 0.613 |
|
27 |
+
| Peters et al. (2019) | 82.1 | 73.1 | - | - |
|
28 |
+
| Martins et al. (2019) | 85.2 | 81.9 | - | - |
|
29 |
+
| van Hulst et al. (2020) | 83.3 | 82.4 | 19.0M | 0.337 |
|
30 |
+
| Févry et al. (2020) | 79.7 | 76.7 | - | - |
|
31 |
+
| Poerner et al. (2020) | 90.8 | 85.0 | 131.1M | - |
|
32 |
+
| Kannan Ravi et al. (2021) | - | 83.1 | - | - |
|
33 |
+
| De Cao et al. (2021b) | - | 83.7 | 406.3M | 40.969 |
|
34 |
+
| De Cao et al. (2021a)<br/>(no mention-specific candidate set) | 61.9 | 49.4 | 124.8M | 0.268 |
|
35 |
+
| De Cao et al. (2021a)<br/>(using PPRforNED candidate set) | 90.1 | 85.5 | 124.8M | 0.194 |
|
36 |
+
| Mrini et al. (2022) | - | 85.7 | (train) 811.5M<br/>(test) 406.2M | - |
|
37 |
+
| Zhang et al. (2022) | - | 85.8 | 1004.3M | - |
|
38 |
+
| Feng et al. (2022) | - | 86.3 | 157.3M | - |
|
39 |
+
| <hr/> | <hr/> | <hr/> | <hr/> | <hr/> |
|
40 |
+
| **SpEL-base** (no mention-specific candidate set) | 91.3 | 85.5 | 128.9M | 0.084 |
|
41 |
+
| **SpEL-base** (KB+Yago candidate set) | 90.6 | 85.7 | 128.9M | 0.158 |
|
42 |
+
| **SpEL-base** (PPRforNED candidate set)<br/>(context-agnostic) | 91.7 | 86.8 | 128.9M | 0.153 |
|
43 |
+
| **SpEL-base** (PPRforNED candidate set)<br/>(context-aware) | 92.7 | 88.1 | 128.9M | 0.156 |
|
44 |
+
| **SpEL-large** (no mention-specific candidate set) | 91.6 | 85.8 | 361.1M | 0.273 |
|
45 |
+
| **SpEL-large** (KB+Yago candidate set) | 90.8 | 85.7 | 361.1M | 0.267 |
|
46 |
+
| **SpEL-large** (PPRforNED candidate set)<br/>(context-agnostic) | 92.0 | 87.3 | 361.1M | 0.268 |
|
47 |
+
| **SpEL-large** (PPRforNED candidate set)<br/>(context-aware) | 92.9 | 88.6 | 361.1M | 0.267 |
|
48 |
+
|
49 |
+
----
|
50 |
+
|
51 |
+
## Citation
|
52 |
+
If you use SpEL finetuned models or data, please cite our paper:
|
53 |
+
|
54 |
+
```
|
55 |
+
@inproceedings{shavarani2023spel,
|
56 |
+
title={Sp{EL}: Structured Prediction for Entity Linking},
|
57 |
+
author={Shavarani, Hassan S. and Sarkar, Anoop},
|
58 |
+
booktitle={The 2023 Conference on Empirical Methods in Natural Language Processing},
|
59 |
+
year={2023},
|
60 |
+
url={https://arxiv.org/abs/2310.14684}
|
61 |
+
}
|
62 |
+
```
|