Hassan Shavarani
commited on
Commit
•
68f0c2d
1
Parent(s):
7bbcb81
Update README.md
Browse files
README.md
CHANGED
@@ -17,6 +17,49 @@ SpEL model finetuned on English Wikipedia as well as the training portion of CoN
|
|
17 |
It is introduced in the paper [SPEL: Structured Prediction for Entity Linking (EMNLP 2023)](https://arxiv.org/abs/2310.14684).
|
18 |
The code and data are available in [this repository](https://github.com/shavarani/SpEL).
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
## Evaluation Results
|
21 |
Entity Linking evaluation results of *SpEL* compared to that of the literature over AIDA test sets:
|
22 |
|
|
|
17 |
It is introduced in the paper [SPEL: Structured Prediction for Entity Linking (EMNLP 2023)](https://arxiv.org/abs/2310.14684).
|
18 |
The code and data are available in [this repository](https://github.com/shavarani/SpEL).
|
19 |
|
20 |
+
### Usage
|
21 |
+
The following snippet demonstrates a quick way that SpEL can be used to generate subword-level, word-level, and phrase-level annotations for a sentence.
|
22 |
+
|
23 |
+
```python
|
24 |
+
# download SpEL from https://github.com/shavarani/SpEL
|
25 |
+
from transformers import AutoTokenizer
|
26 |
+
from spel.model import SpELAnnotator
|
27 |
+
from spel.configuration import device
|
28 |
+
from spel.utils import get_subword_to_word_mapping
|
29 |
+
from spel.span_annotation import WordAnnotation, PhraseAnnotation
|
30 |
+
finetuned_after_step = 4
|
31 |
+
sentence = "Grace Kelly by Mika reached the top of the UK Singles Chart in 2007."
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
33 |
+
# ############################################# LOAD SpEL #############################################################
|
34 |
+
spel = SpELAnnotator()
|
35 |
+
spel.init_model_from_scratch(device=device)
|
36 |
+
if finetuned_after_step == 3:
|
37 |
+
spel.shrink_classification_head_to_aida(device)
|
38 |
+
spel.load_checkpoint(None, device=device, load_from_torch_hub=True, finetuned_after_step=finetuned_after_step)
|
39 |
+
# ############################################# RUN SpEL ##############################################################
|
40 |
+
inputs = tokenizer(sentence, return_tensors="pt")
|
41 |
+
token_offsets = list(zip(inputs.encodings[0].tokens,inputs.encodings[0].offsets))
|
42 |
+
subword_annotations = spel.annotate_subword_ids(inputs.input_ids, k_for_top_k_to_keep=10, token_offsets=token_offsets)
|
43 |
+
# #################################### CREATE WORD-LEVEL ANNOTATIONS ##################################################
|
44 |
+
tokens_offsets = token_offsets[1:-1]
|
45 |
+
subword_annotations = subword_annotations[1:]
|
46 |
+
word_annotations = [WordAnnotation(subword_annotations[m[0]:m[1]], tokens_offsets[m[0]:m[1]])
|
47 |
+
for m in get_subword_to_word_mapping(inputs.tokens(), sentence)]
|
48 |
+
# ################################## CREATE PHRASE-LEVEL ANNOTATIONS ##################################################
|
49 |
+
phrase_annotations = []
|
50 |
+
for w in word_annotations:
|
51 |
+
if not w.annotations:
|
52 |
+
continue
|
53 |
+
if phrase_annotations and phrase_annotations[-1].resolved_annotation == w.resolved_annotation:
|
54 |
+
phrase_annotations[-1].add(w)
|
55 |
+
else:
|
56 |
+
phrase_annotations.append(PhraseAnnotation(w))
|
57 |
+
```
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
## Evaluation Results
|
64 |
Entity Linking evaluation results of *SpEL* compared to that of the literature over AIDA test sets:
|
65 |
|