--- library_name: transformers base_model: OFA-Sys/chinese-clip-vit-base-patch16 tags: - generated_from_trainer metrics: - accuracy model-index: - name: fusion_concate_sep_SEP_describe_gpt results: [] --- # fusion_concate_sep_SEP_describe_gpt This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co./OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6264 - Accuracy: 0.0807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 40 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 320 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 2.4506 | 5.9807 | 1164 | 2.9871 | 0.0736 | | 2.3229 | 11.9615 | 2328 | 3.1384 | 0.0733 | | 2.2364 | 17.9422 | 3492 | 3.1920 | 0.0795 | | 2.1589 | 23.9229 | 4656 | 3.2667 | 0.0825 | | 2.1034 | 29.9037 | 5820 | 3.2883 | 0.0835 | | 2.0555 | 35.8844 | 6984 | 3.3512 | 0.0837 | | 2.0231 | 41.8651 | 8148 | 3.4304 | 0.0836 | | 2.0056 | 47.8459 | 9312 | 3.5540 | 0.0831 | | 1.9964 | 53.8266 | 10476 | 3.5894 | 0.0820 | | 1.9848 | 59.8073 | 11640 | 3.6264 | 0.0813 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.0