--- library_name: transformers base_model: OFA-Sys/chinese-clip-vit-base-patch16 tags: - generated_from_trainer metrics: - accuracy model-index: - name: fusion_None_sep_SEP_describe_llama results: [] --- # fusion_None_sep_SEP_describe_llama This model is a fine-tuned version of [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co./OFA-Sys/chinese-clip-vit-base-patch16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5783 - Accuracy: 0.2842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 60 - eval_batch_size: 20 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 480 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.686 | 5.9653 | 774 | 2.3316 | 0.3232 | | 2.5095 | 11.9306 | 1548 | 2.3506 | 0.3168 | | 2.4304 | 17.8960 | 2322 | 2.4180 | 0.3103 | | 2.3871 | 23.8613 | 3096 | 2.4723 | 0.3052 | | 2.3556 | 29.8266 | 3870 | 2.5127 | 0.3 | | 2.3325 | 35.7919 | 4644 | 2.5233 | 0.2965 | | 2.3155 | 41.7572 | 5418 | 2.5572 | 0.2930 | | 2.3137 | 47.7225 | 6192 | 2.5639 | 0.2903 | | 2.2978 | 53.6879 | 6966 | 2.5749 | 0.2878 | | 2.2964 | 59.6532 | 7740 | 2.5783 | 0.2858 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.0