File size: 1,423 Bytes
9e8166b
 
 
43f9704
9e8166b
ddced7e
9e8166b
43f9704
87b8505
 
43f9704
 
65cb93b
5c44a3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369ce89
5c44a3f
 
65cb93b
369ce89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
language: "en"
tags:
- boolean-qa
widget:
- text: "Is Berlin the smallest city of Germany?  <s> Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city, according to the population within city limits "
---
# Labels Map
LABEL_0 => **"NO"** <br/>
LABEL_1 => **"YES"**


```python
from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
)

model = AutoModelForSequenceClassification.from_pretrained("shahrukhx01/roberta-base-boolq")
model.to(device) 
#model.push_to_hub("roberta-base-boolq")

tokenizer = AutoTokenizer.from_pretrained("shahrukhx01/roberta-base-boolq")

def predict(question, passage):
  sequence = tokenizer.encode_plus(question, passage, return_tensors="pt")['input_ids'].to(device)
  
  logits = model(sequence)[0]
  probabilities = torch.softmax(logits, dim=1).detach().cpu().tolist()[0]
  proba_yes = round(probabilities[1], 2)
  proba_no = round(probabilities[0], 2)

  print(f"Question: {question}, Yes: {proba_yes}, No: {proba_no}")
  
passage = """Berlin is the capital and largest city of Germany by both area and population. Its 3.8 million inhabitants make it the European Union's most populous city, 
                        according to the population within city limits."""
 
question = "Is Berlin the smallest city of Germany?"
predict(s_question, passage)
```