sh4796 commited on
Commit
05da313
1 Parent(s): 433bfa5

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,823 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - generated_from_trainer
29
+ - dataset_size:6300
30
+ - loss:MatryoshkaLoss
31
+ - loss:MultipleNegativesRankingLoss
32
+ widget:
33
+ - source_sentence: The consolidated financial statements and accompanying notes listed
34
+ in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included elsewhere
35
+ in this Annual Report on Form 10-K.
36
+ sentences:
37
+ - What is the carrying value of the indefinite-lived intangible assets related to
38
+ the Certificate of Needs and Medicare licenses as of December 31, 2023?
39
+ - What sections of the Annual Report on Form 10-K contain the company's financial
40
+ statements?
41
+ - What was the effective tax rate excluding discrete net tax benefits for the year
42
+ 2022?
43
+ - source_sentence: Consumers are served through Amazon's online and physical stores
44
+ with an emphasis on selection, price, and convenience.
45
+ sentences:
46
+ - What decision did the European Commission make on July 10, 2023 regarding the
47
+ United States?
48
+ - What are the primary offerings to consumers through Amazon's online and physical
49
+ stores?
50
+ - What activities are included in the services and other revenue segment of General
51
+ Motors Company?
52
+ - source_sentence: Visa has traditionally referred to their structure of facilitating
53
+ secure, reliable, and efficient money movement among consumers, issuing and acquiring
54
+ financial institutions, and merchants as the 'four-party' model.
55
+ sentences:
56
+ - What model does Visa traditionally refer to regarding their transaction process
57
+ among consumers, financial institutions, and merchants?
58
+ - What percentage of Meta's U.S. workforce in 2023 were represented by people with
59
+ disabilities, veterans, and members of the LGBTQ+ community?
60
+ - What are the revenue sources for the Company’s Health Care Benefits Segment?
61
+ - source_sentence: 'In addition to LinkedIn’s free services, LinkedIn offers monetized
62
+ solutions: Talent Solutions, Marketing Solutions, Premium Subscriptions, and Sales
63
+ Solutions. Talent Solutions provide insights for workforce planning and tools
64
+ to hire, nurture, and develop talent. Talent Solutions also includes Learning
65
+ Solutions, which help businesses close critical skills gaps in times where companies
66
+ are having to do more with existing talent.'
67
+ sentences:
68
+ - What were the major factors contributing to the increased expenses excluding interest
69
+ for Investor Services and Advisor Services in 2023?
70
+ - What were the pre-tax earnings of the manufacturing sector in 2023, 2022, and
71
+ 2021?
72
+ - What does LinkedIn's Talent Solutions include?
73
+ - source_sentence: Management assessed the effectiveness of the company’s internal
74
+ control over financial reporting as of December 31, 2023. In making this assessment,
75
+ we used the criteria set forth by the Committee of Sponsoring Organizations of
76
+ the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).
77
+ sentences:
78
+ - What criteria did Caterpillar Inc. use to assess the effectiveness of its internal
79
+ control over financial reporting as of December 31, 2023?
80
+ - What are the primary components of U.S. sales volumes for Ford?
81
+ - What was the percentage increase in Schwab's common stock dividend in 2022?
82
+ model-index:
83
+ - name: BGE base Financial Matryoshka
84
+ results:
85
+ - task:
86
+ type: information-retrieval
87
+ name: Information Retrieval
88
+ dataset:
89
+ name: dim 768
90
+ type: dim_768
91
+ metrics:
92
+ - type: cosine_accuracy@1
93
+ value: 0.69
94
+ name: Cosine Accuracy@1
95
+ - type: cosine_accuracy@3
96
+ value: 0.8385714285714285
97
+ name: Cosine Accuracy@3
98
+ - type: cosine_accuracy@5
99
+ value: 0.87
100
+ name: Cosine Accuracy@5
101
+ - type: cosine_accuracy@10
102
+ value: 0.92
103
+ name: Cosine Accuracy@10
104
+ - type: cosine_precision@1
105
+ value: 0.69
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@3
108
+ value: 0.27952380952380956
109
+ name: Cosine Precision@3
110
+ - type: cosine_precision@5
111
+ value: 0.174
112
+ name: Cosine Precision@5
113
+ - type: cosine_precision@10
114
+ value: 0.09199999999999998
115
+ name: Cosine Precision@10
116
+ - type: cosine_recall@1
117
+ value: 0.69
118
+ name: Cosine Recall@1
119
+ - type: cosine_recall@3
120
+ value: 0.8385714285714285
121
+ name: Cosine Recall@3
122
+ - type: cosine_recall@5
123
+ value: 0.87
124
+ name: Cosine Recall@5
125
+ - type: cosine_recall@10
126
+ value: 0.92
127
+ name: Cosine Recall@10
128
+ - type: cosine_ndcg@10
129
+ value: 0.8078047173747194
130
+ name: Cosine Ndcg@10
131
+ - type: cosine_mrr@10
132
+ value: 0.7717607709750567
133
+ name: Cosine Mrr@10
134
+ - type: cosine_map@100
135
+ value: 0.7745029834237301
136
+ name: Cosine Map@100
137
+ - task:
138
+ type: information-retrieval
139
+ name: Information Retrieval
140
+ dataset:
141
+ name: dim 512
142
+ type: dim_512
143
+ metrics:
144
+ - type: cosine_accuracy@1
145
+ value: 0.7014285714285714
146
+ name: Cosine Accuracy@1
147
+ - type: cosine_accuracy@3
148
+ value: 0.8342857142857143
149
+ name: Cosine Accuracy@3
150
+ - type: cosine_accuracy@5
151
+ value: 0.8671428571428571
152
+ name: Cosine Accuracy@5
153
+ - type: cosine_accuracy@10
154
+ value: 0.9171428571428571
155
+ name: Cosine Accuracy@10
156
+ - type: cosine_precision@1
157
+ value: 0.7014285714285714
158
+ name: Cosine Precision@1
159
+ - type: cosine_precision@3
160
+ value: 0.27809523809523806
161
+ name: Cosine Precision@3
162
+ - type: cosine_precision@5
163
+ value: 0.1734285714285714
164
+ name: Cosine Precision@5
165
+ - type: cosine_precision@10
166
+ value: 0.09171428571428569
167
+ name: Cosine Precision@10
168
+ - type: cosine_recall@1
169
+ value: 0.7014285714285714
170
+ name: Cosine Recall@1
171
+ - type: cosine_recall@3
172
+ value: 0.8342857142857143
173
+ name: Cosine Recall@3
174
+ - type: cosine_recall@5
175
+ value: 0.8671428571428571
176
+ name: Cosine Recall@5
177
+ - type: cosine_recall@10
178
+ value: 0.9171428571428571
179
+ name: Cosine Recall@10
180
+ - type: cosine_ndcg@10
181
+ value: 0.8099294101814819
182
+ name: Cosine Ndcg@10
183
+ - type: cosine_mrr@10
184
+ value: 0.775592970521542
185
+ name: Cosine Mrr@10
186
+ - type: cosine_map@100
187
+ value: 0.7785490266159816
188
+ name: Cosine Map@100
189
+ - task:
190
+ type: information-retrieval
191
+ name: Information Retrieval
192
+ dataset:
193
+ name: dim 256
194
+ type: dim_256
195
+ metrics:
196
+ - type: cosine_accuracy@1
197
+ value: 0.6928571428571428
198
+ name: Cosine Accuracy@1
199
+ - type: cosine_accuracy@3
200
+ value: 0.8285714285714286
201
+ name: Cosine Accuracy@3
202
+ - type: cosine_accuracy@5
203
+ value: 0.8614285714285714
204
+ name: Cosine Accuracy@5
205
+ - type: cosine_accuracy@10
206
+ value: 0.91
207
+ name: Cosine Accuracy@10
208
+ - type: cosine_precision@1
209
+ value: 0.6928571428571428
210
+ name: Cosine Precision@1
211
+ - type: cosine_precision@3
212
+ value: 0.2761904761904762
213
+ name: Cosine Precision@3
214
+ - type: cosine_precision@5
215
+ value: 0.17228571428571426
216
+ name: Cosine Precision@5
217
+ - type: cosine_precision@10
218
+ value: 0.091
219
+ name: Cosine Precision@10
220
+ - type: cosine_recall@1
221
+ value: 0.6928571428571428
222
+ name: Cosine Recall@1
223
+ - type: cosine_recall@3
224
+ value: 0.8285714285714286
225
+ name: Cosine Recall@3
226
+ - type: cosine_recall@5
227
+ value: 0.8614285714285714
228
+ name: Cosine Recall@5
229
+ - type: cosine_recall@10
230
+ value: 0.91
231
+ name: Cosine Recall@10
232
+ - type: cosine_ndcg@10
233
+ value: 0.8023495466461429
234
+ name: Cosine Ndcg@10
235
+ - type: cosine_mrr@10
236
+ value: 0.7679013605442175
237
+ name: Cosine Mrr@10
238
+ - type: cosine_map@100
239
+ value: 0.7712468743892164
240
+ name: Cosine Map@100
241
+ - task:
242
+ type: information-retrieval
243
+ name: Information Retrieval
244
+ dataset:
245
+ name: dim 128
246
+ type: dim_128
247
+ metrics:
248
+ - type: cosine_accuracy@1
249
+ value: 0.6728571428571428
250
+ name: Cosine Accuracy@1
251
+ - type: cosine_accuracy@3
252
+ value: 0.8171428571428572
253
+ name: Cosine Accuracy@3
254
+ - type: cosine_accuracy@5
255
+ value: 0.85
256
+ name: Cosine Accuracy@5
257
+ - type: cosine_accuracy@10
258
+ value: 0.8828571428571429
259
+ name: Cosine Accuracy@10
260
+ - type: cosine_precision@1
261
+ value: 0.6728571428571428
262
+ name: Cosine Precision@1
263
+ - type: cosine_precision@3
264
+ value: 0.2723809523809524
265
+ name: Cosine Precision@3
266
+ - type: cosine_precision@5
267
+ value: 0.16999999999999998
268
+ name: Cosine Precision@5
269
+ - type: cosine_precision@10
270
+ value: 0.08828571428571429
271
+ name: Cosine Precision@10
272
+ - type: cosine_recall@1
273
+ value: 0.6728571428571428
274
+ name: Cosine Recall@1
275
+ - type: cosine_recall@3
276
+ value: 0.8171428571428572
277
+ name: Cosine Recall@3
278
+ - type: cosine_recall@5
279
+ value: 0.85
280
+ name: Cosine Recall@5
281
+ - type: cosine_recall@10
282
+ value: 0.8828571428571429
283
+ name: Cosine Recall@10
284
+ - type: cosine_ndcg@10
285
+ value: 0.7823204493781594
286
+ name: Cosine Ndcg@10
287
+ - type: cosine_mrr@10
288
+ value: 0.7495634920634917
289
+ name: Cosine Mrr@10
290
+ - type: cosine_map@100
291
+ value: 0.75425425293366
292
+ name: Cosine Map@100
293
+ - task:
294
+ type: information-retrieval
295
+ name: Information Retrieval
296
+ dataset:
297
+ name: dim 64
298
+ type: dim_64
299
+ metrics:
300
+ - type: cosine_accuracy@1
301
+ value: 0.64
302
+ name: Cosine Accuracy@1
303
+ - type: cosine_accuracy@3
304
+ value: 0.79
305
+ name: Cosine Accuracy@3
306
+ - type: cosine_accuracy@5
307
+ value: 0.83
308
+ name: Cosine Accuracy@5
309
+ - type: cosine_accuracy@10
310
+ value: 0.8742857142857143
311
+ name: Cosine Accuracy@10
312
+ - type: cosine_precision@1
313
+ value: 0.64
314
+ name: Cosine Precision@1
315
+ - type: cosine_precision@3
316
+ value: 0.26333333333333336
317
+ name: Cosine Precision@3
318
+ - type: cosine_precision@5
319
+ value: 0.16599999999999998
320
+ name: Cosine Precision@5
321
+ - type: cosine_precision@10
322
+ value: 0.08742857142857141
323
+ name: Cosine Precision@10
324
+ - type: cosine_recall@1
325
+ value: 0.64
326
+ name: Cosine Recall@1
327
+ - type: cosine_recall@3
328
+ value: 0.79
329
+ name: Cosine Recall@3
330
+ - type: cosine_recall@5
331
+ value: 0.83
332
+ name: Cosine Recall@5
333
+ - type: cosine_recall@10
334
+ value: 0.8742857142857143
335
+ name: Cosine Recall@10
336
+ - type: cosine_ndcg@10
337
+ value: 0.7602361447545036
338
+ name: Cosine Ndcg@10
339
+ - type: cosine_mrr@10
340
+ value: 0.7233747165532877
341
+ name: Cosine Mrr@10
342
+ - type: cosine_map@100
343
+ value: 0.7278552309882971
344
+ name: Cosine Map@100
345
+ ---
346
+
347
+ # BGE base Financial Matryoshka
348
+
349
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
350
+
351
+ ## Model Details
352
+
353
+ ### Model Description
354
+ - **Model Type:** Sentence Transformer
355
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
356
+ - **Maximum Sequence Length:** 512 tokens
357
+ - **Output Dimensionality:** 768 tokens
358
+ - **Similarity Function:** Cosine Similarity
359
+ - **Training Dataset:**
360
+ - json
361
+ - **Language:** en
362
+ - **License:** apache-2.0
363
+
364
+ ### Model Sources
365
+
366
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
367
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
368
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
369
+
370
+ ### Full Model Architecture
371
+
372
+ ```
373
+ SentenceTransformer(
374
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
375
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
376
+ (2): Normalize()
377
+ )
378
+ ```
379
+
380
+ ## Usage
381
+
382
+ ### Direct Usage (Sentence Transformers)
383
+
384
+ First install the Sentence Transformers library:
385
+
386
+ ```bash
387
+ pip install -U sentence-transformers
388
+ ```
389
+
390
+ Then you can load this model and run inference.
391
+ ```python
392
+ from sentence_transformers import SentenceTransformer
393
+
394
+ # Download from the 🤗 Hub
395
+ model = SentenceTransformer("sh4796/bge-base-financial-matryoshka")
396
+ # Run inference
397
+ sentences = [
398
+ 'Management assessed the effectiveness of the company’s internal control over financial reporting as of December 31, 2023. In making this assessment, we used the criteria set forth by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) in Internal Control—Integrated Framework (2013).',
399
+ 'What criteria did Caterpillar Inc. use to assess the effectiveness of its internal control over financial reporting as of December 31, 2023?',
400
+ 'What are the primary components of U.S. sales volumes for Ford?',
401
+ ]
402
+ embeddings = model.encode(sentences)
403
+ print(embeddings.shape)
404
+ # [3, 768]
405
+
406
+ # Get the similarity scores for the embeddings
407
+ similarities = model.similarity(embeddings, embeddings)
408
+ print(similarities.shape)
409
+ # [3, 3]
410
+ ```
411
+
412
+ <!--
413
+ ### Direct Usage (Transformers)
414
+
415
+ <details><summary>Click to see the direct usage in Transformers</summary>
416
+
417
+ </details>
418
+ -->
419
+
420
+ <!--
421
+ ### Downstream Usage (Sentence Transformers)
422
+
423
+ You can finetune this model on your own dataset.
424
+
425
+ <details><summary>Click to expand</summary>
426
+
427
+ </details>
428
+ -->
429
+
430
+ <!--
431
+ ### Out-of-Scope Use
432
+
433
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
434
+ -->
435
+
436
+ ## Evaluation
437
+
438
+ ### Metrics
439
+
440
+ #### Information Retrieval
441
+ * Dataset: `dim_768`
442
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
443
+
444
+ | Metric | Value |
445
+ |:--------------------|:-----------|
446
+ | cosine_accuracy@1 | 0.69 |
447
+ | cosine_accuracy@3 | 0.8386 |
448
+ | cosine_accuracy@5 | 0.87 |
449
+ | cosine_accuracy@10 | 0.92 |
450
+ | cosine_precision@1 | 0.69 |
451
+ | cosine_precision@3 | 0.2795 |
452
+ | cosine_precision@5 | 0.174 |
453
+ | cosine_precision@10 | 0.092 |
454
+ | cosine_recall@1 | 0.69 |
455
+ | cosine_recall@3 | 0.8386 |
456
+ | cosine_recall@5 | 0.87 |
457
+ | cosine_recall@10 | 0.92 |
458
+ | cosine_ndcg@10 | 0.8078 |
459
+ | cosine_mrr@10 | 0.7718 |
460
+ | **cosine_map@100** | **0.7745** |
461
+
462
+ #### Information Retrieval
463
+ * Dataset: `dim_512`
464
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
465
+
466
+ | Metric | Value |
467
+ |:--------------------|:-----------|
468
+ | cosine_accuracy@1 | 0.7014 |
469
+ | cosine_accuracy@3 | 0.8343 |
470
+ | cosine_accuracy@5 | 0.8671 |
471
+ | cosine_accuracy@10 | 0.9171 |
472
+ | cosine_precision@1 | 0.7014 |
473
+ | cosine_precision@3 | 0.2781 |
474
+ | cosine_precision@5 | 0.1734 |
475
+ | cosine_precision@10 | 0.0917 |
476
+ | cosine_recall@1 | 0.7014 |
477
+ | cosine_recall@3 | 0.8343 |
478
+ | cosine_recall@5 | 0.8671 |
479
+ | cosine_recall@10 | 0.9171 |
480
+ | cosine_ndcg@10 | 0.8099 |
481
+ | cosine_mrr@10 | 0.7756 |
482
+ | **cosine_map@100** | **0.7785** |
483
+
484
+ #### Information Retrieval
485
+ * Dataset: `dim_256`
486
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
487
+
488
+ | Metric | Value |
489
+ |:--------------------|:-----------|
490
+ | cosine_accuracy@1 | 0.6929 |
491
+ | cosine_accuracy@3 | 0.8286 |
492
+ | cosine_accuracy@5 | 0.8614 |
493
+ | cosine_accuracy@10 | 0.91 |
494
+ | cosine_precision@1 | 0.6929 |
495
+ | cosine_precision@3 | 0.2762 |
496
+ | cosine_precision@5 | 0.1723 |
497
+ | cosine_precision@10 | 0.091 |
498
+ | cosine_recall@1 | 0.6929 |
499
+ | cosine_recall@3 | 0.8286 |
500
+ | cosine_recall@5 | 0.8614 |
501
+ | cosine_recall@10 | 0.91 |
502
+ | cosine_ndcg@10 | 0.8023 |
503
+ | cosine_mrr@10 | 0.7679 |
504
+ | **cosine_map@100** | **0.7712** |
505
+
506
+ #### Information Retrieval
507
+ * Dataset: `dim_128`
508
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
509
+
510
+ | Metric | Value |
511
+ |:--------------------|:-----------|
512
+ | cosine_accuracy@1 | 0.6729 |
513
+ | cosine_accuracy@3 | 0.8171 |
514
+ | cosine_accuracy@5 | 0.85 |
515
+ | cosine_accuracy@10 | 0.8829 |
516
+ | cosine_precision@1 | 0.6729 |
517
+ | cosine_precision@3 | 0.2724 |
518
+ | cosine_precision@5 | 0.17 |
519
+ | cosine_precision@10 | 0.0883 |
520
+ | cosine_recall@1 | 0.6729 |
521
+ | cosine_recall@3 | 0.8171 |
522
+ | cosine_recall@5 | 0.85 |
523
+ | cosine_recall@10 | 0.8829 |
524
+ | cosine_ndcg@10 | 0.7823 |
525
+ | cosine_mrr@10 | 0.7496 |
526
+ | **cosine_map@100** | **0.7543** |
527
+
528
+ #### Information Retrieval
529
+ * Dataset: `dim_64`
530
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
531
+
532
+ | Metric | Value |
533
+ |:--------------------|:-----------|
534
+ | cosine_accuracy@1 | 0.64 |
535
+ | cosine_accuracy@3 | 0.79 |
536
+ | cosine_accuracy@5 | 0.83 |
537
+ | cosine_accuracy@10 | 0.8743 |
538
+ | cosine_precision@1 | 0.64 |
539
+ | cosine_precision@3 | 0.2633 |
540
+ | cosine_precision@5 | 0.166 |
541
+ | cosine_precision@10 | 0.0874 |
542
+ | cosine_recall@1 | 0.64 |
543
+ | cosine_recall@3 | 0.79 |
544
+ | cosine_recall@5 | 0.83 |
545
+ | cosine_recall@10 | 0.8743 |
546
+ | cosine_ndcg@10 | 0.7602 |
547
+ | cosine_mrr@10 | 0.7234 |
548
+ | **cosine_map@100** | **0.7279** |
549
+
550
+ <!--
551
+ ## Bias, Risks and Limitations
552
+
553
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
554
+ -->
555
+
556
+ <!--
557
+ ### Recommendations
558
+
559
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
560
+ -->
561
+
562
+ ## Training Details
563
+
564
+ ### Training Dataset
565
+
566
+ #### json
567
+
568
+ * Dataset: json
569
+ * Size: 6,300 training samples
570
+ * Columns: <code>positive</code> and <code>anchor</code>
571
+ * Approximate statistics based on the first 1000 samples:
572
+ | | positive | anchor |
573
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
574
+ | type | string | string |
575
+ | details | <ul><li>min: 8 tokens</li><li>mean: 44.33 tokens</li><li>max: 289 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.43 tokens</li><li>max: 46 tokens</li></ul> |
576
+ * Samples:
577
+ | positive | anchor |
578
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
579
+ | <code>The Company defines fair value as the price received to transfer an asset or paid to transfer a liability in an orderly transaction between market participants at the measurement date. In accordance with ASC 820, Fair Value Measurements and Disclosures, the Company uses the fair value hierarchy which prioritizes the inputs used to measure fair value. The hierarchy gives the highest priority to unadjusted quoted prices in active markets for identical assets or liabilities (Level 1), observable inputs other than quoted prices (Level 2), and unobservable inputs (Level 3).</code> | <code>What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy according to ASC 820?</code> |
580
+ | <code>In the event of conversion of the Notes, if shares are delivered to the Company under the Capped Call Transactions, they will offset the dilutive effect of the shares that the Company would issue under the Notes.</code> | <code>What happens to the dilutive effect of shares issued under the Notes if shares are delivered to the Company under the Capped Call Transactions during the conversion?</code> |
581
+ | <code>Marketing expenses increased $48.8 million to $759.2 million in the year ended December 31, 2023 compared to the year ended December 31, 2022.</code> | <code>How much did the marketing expenses increase in the year ended December 31, 2023?</code> |
582
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
583
+ ```json
584
+ {
585
+ "loss": "MultipleNegativesRankingLoss",
586
+ "matryoshka_dims": [
587
+ 768,
588
+ 512,
589
+ 256,
590
+ 128,
591
+ 64
592
+ ],
593
+ "matryoshka_weights": [
594
+ 1,
595
+ 1,
596
+ 1,
597
+ 1,
598
+ 1
599
+ ],
600
+ "n_dims_per_step": -1
601
+ }
602
+ ```
603
+
604
+ ### Training Hyperparameters
605
+ #### Non-Default Hyperparameters
606
+
607
+ - `eval_strategy`: epoch
608
+ - `per_device_train_batch_size`: 32
609
+ - `per_device_eval_batch_size`: 16
610
+ - `gradient_accumulation_steps`: 16
611
+ - `learning_rate`: 2e-05
612
+ - `num_train_epochs`: 4
613
+ - `lr_scheduler_type`: cosine
614
+ - `warmup_ratio`: 0.1
615
+ - `bf16`: True
616
+ - `tf32`: True
617
+ - `load_best_model_at_end`: True
618
+ - `optim`: adamw_torch_fused
619
+ - `batch_sampler`: no_duplicates
620
+
621
+ #### All Hyperparameters
622
+ <details><summary>Click to expand</summary>
623
+
624
+ - `overwrite_output_dir`: False
625
+ - `do_predict`: False
626
+ - `eval_strategy`: epoch
627
+ - `prediction_loss_only`: True
628
+ - `per_device_train_batch_size`: 32
629
+ - `per_device_eval_batch_size`: 16
630
+ - `per_gpu_train_batch_size`: None
631
+ - `per_gpu_eval_batch_size`: None
632
+ - `gradient_accumulation_steps`: 16
633
+ - `eval_accumulation_steps`: None
634
+ - `learning_rate`: 2e-05
635
+ - `weight_decay`: 0.0
636
+ - `adam_beta1`: 0.9
637
+ - `adam_beta2`: 0.999
638
+ - `adam_epsilon`: 1e-08
639
+ - `max_grad_norm`: 1.0
640
+ - `num_train_epochs`: 4
641
+ - `max_steps`: -1
642
+ - `lr_scheduler_type`: cosine
643
+ - `lr_scheduler_kwargs`: {}
644
+ - `warmup_ratio`: 0.1
645
+ - `warmup_steps`: 0
646
+ - `log_level`: passive
647
+ - `log_level_replica`: warning
648
+ - `log_on_each_node`: True
649
+ - `logging_nan_inf_filter`: True
650
+ - `save_safetensors`: True
651
+ - `save_on_each_node`: False
652
+ - `save_only_model`: False
653
+ - `restore_callback_states_from_checkpoint`: False
654
+ - `no_cuda`: False
655
+ - `use_cpu`: False
656
+ - `use_mps_device`: False
657
+ - `seed`: 42
658
+ - `data_seed`: None
659
+ - `jit_mode_eval`: False
660
+ - `use_ipex`: False
661
+ - `bf16`: True
662
+ - `fp16`: False
663
+ - `fp16_opt_level`: O1
664
+ - `half_precision_backend`: auto
665
+ - `bf16_full_eval`: False
666
+ - `fp16_full_eval`: False
667
+ - `tf32`: True
668
+ - `local_rank`: 0
669
+ - `ddp_backend`: None
670
+ - `tpu_num_cores`: None
671
+ - `tpu_metrics_debug`: False
672
+ - `debug`: []
673
+ - `dataloader_drop_last`: False
674
+ - `dataloader_num_workers`: 0
675
+ - `dataloader_prefetch_factor`: None
676
+ - `past_index`: -1
677
+ - `disable_tqdm`: False
678
+ - `remove_unused_columns`: True
679
+ - `label_names`: None
680
+ - `load_best_model_at_end`: True
681
+ - `ignore_data_skip`: False
682
+ - `fsdp`: []
683
+ - `fsdp_min_num_params`: 0
684
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
685
+ - `fsdp_transformer_layer_cls_to_wrap`: None
686
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
687
+ - `deepspeed`: None
688
+ - `label_smoothing_factor`: 0.0
689
+ - `optim`: adamw_torch_fused
690
+ - `optim_args`: None
691
+ - `adafactor`: False
692
+ - `group_by_length`: False
693
+ - `length_column_name`: length
694
+ - `ddp_find_unused_parameters`: None
695
+ - `ddp_bucket_cap_mb`: None
696
+ - `ddp_broadcast_buffers`: False
697
+ - `dataloader_pin_memory`: True
698
+ - `dataloader_persistent_workers`: False
699
+ - `skip_memory_metrics`: True
700
+ - `use_legacy_prediction_loop`: False
701
+ - `push_to_hub`: False
702
+ - `resume_from_checkpoint`: None
703
+ - `hub_model_id`: None
704
+ - `hub_strategy`: every_save
705
+ - `hub_private_repo`: False
706
+ - `hub_always_push`: False
707
+ - `gradient_checkpointing`: False
708
+ - `gradient_checkpointing_kwargs`: None
709
+ - `include_inputs_for_metrics`: False
710
+ - `eval_do_concat_batches`: True
711
+ - `fp16_backend`: auto
712
+ - `push_to_hub_model_id`: None
713
+ - `push_to_hub_organization`: None
714
+ - `mp_parameters`:
715
+ - `auto_find_batch_size`: False
716
+ - `full_determinism`: False
717
+ - `torchdynamo`: None
718
+ - `ray_scope`: last
719
+ - `ddp_timeout`: 1800
720
+ - `torch_compile`: False
721
+ - `torch_compile_backend`: None
722
+ - `torch_compile_mode`: None
723
+ - `dispatch_batches`: None
724
+ - `split_batches`: None
725
+ - `include_tokens_per_second`: False
726
+ - `include_num_input_tokens_seen`: False
727
+ - `neftune_noise_alpha`: None
728
+ - `optim_target_modules`: None
729
+ - `batch_eval_metrics`: False
730
+ - `batch_sampler`: no_duplicates
731
+ - `multi_dataset_batch_sampler`: proportional
732
+
733
+ </details>
734
+
735
+ ### Training Logs
736
+ | Epoch | Step | Training Loss | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
737
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
738
+ | 0.8122 | 10 | 1.5604 | - | - | - | - | - |
739
+ | 0.9746 | 12 | - | 0.7538 | 0.7540 | 0.7483 | 0.7284 | 0.6906 |
740
+ | 1.6244 | 20 | 0.6618 | - | - | - | - | - |
741
+ | 1.9492 | 24 | - | 0.7654 | 0.7632 | 0.7582 | 0.7424 | 0.7186 |
742
+ | 2.4365 | 30 | 0.4579 | - | - | - | - | - |
743
+ | 2.9239 | 36 | - | 0.7686 | 0.7646 | 0.7619 | 0.7459 | 0.7238 |
744
+ | 3.2487 | 40 | 0.3995 | - | - | - | - | - |
745
+ | **3.8985** | **48** | **-** | **0.7694** | **0.7633** | **0.7641** | **0.7449** | **0.7225** |
746
+ | 0.8122 | 10 | 0.3798 | - | - | - | - | - |
747
+ | 0.9746 | 12 | - | 0.7713 | 0.7685 | 0.7691 | 0.7489 | 0.7249 |
748
+ | 1.6244 | 20 | 0.2958 | - | - | - | - | - |
749
+ | 1.9492 | 24 | - | 0.7726 | 0.7699 | 0.7688 | 0.7517 | 0.7283 |
750
+ | 2.4365 | 30 | 0.2273 | - | - | - | - | - |
751
+ | 2.9239 | 36 | - | 0.7742 | 0.7761 | 0.7734 | 0.7532 | 0.7276 |
752
+ | 3.2487 | 40 | 0.2136 | - | - | - | - | - |
753
+ | **3.8985** | **48** | **-** | **0.7745** | **0.7785** | **0.7712** | **0.7543** | **0.7279** |
754
+
755
+ * The bold row denotes the saved checkpoint.
756
+
757
+ ### Framework Versions
758
+ - Python: 3.10.12
759
+ - Sentence Transformers: 3.2.0
760
+ - Transformers: 4.41.2
761
+ - PyTorch: 2.2.0a0+6a974be
762
+ - Accelerate: 0.27.0
763
+ - Datasets: 2.19.1
764
+ - Tokenizers: 0.19.1
765
+
766
+ ## Citation
767
+
768
+ ### BibTeX
769
+
770
+ #### Sentence Transformers
771
+ ```bibtex
772
+ @inproceedings{reimers-2019-sentence-bert,
773
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
774
+ author = "Reimers, Nils and Gurevych, Iryna",
775
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
776
+ month = "11",
777
+ year = "2019",
778
+ publisher = "Association for Computational Linguistics",
779
+ url = "https://arxiv.org/abs/1908.10084",
780
+ }
781
+ ```
782
+
783
+ #### MatryoshkaLoss
784
+ ```bibtex
785
+ @misc{kusupati2024matryoshka,
786
+ title={Matryoshka Representation Learning},
787
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
788
+ year={2024},
789
+ eprint={2205.13147},
790
+ archivePrefix={arXiv},
791
+ primaryClass={cs.LG}
792
+ }
793
+ ```
794
+
795
+ #### MultipleNegativesRankingLoss
796
+ ```bibtex
797
+ @misc{henderson2017efficient,
798
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
799
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
800
+ year={2017},
801
+ eprint={1705.00652},
802
+ archivePrefix={arXiv},
803
+ primaryClass={cs.CL}
804
+ }
805
+ ```
806
+
807
+ <!--
808
+ ## Glossary
809
+
810
+ *Clearly define terms in order to be accessible across audiences.*
811
+ -->
812
+
813
+ <!--
814
+ ## Model Card Authors
815
+
816
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
817
+ -->
818
+
819
+ <!--
820
+ ## Model Card Contact
821
+
822
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
823
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.2.0a0+6a974be"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb8a21184967182b41c8bc838b54b787fdbc6c9c0492be8faa248a738f6006a4
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff