File size: 2,381 Bytes
5b2fd29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77cf9e0
5b2fd29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-Diatome
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-Diatome

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the Diatome dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2285
- Accuracy: 0.9429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2009        | 0.23  | 100  | 1.9938          | 0.6045   |
| 1.2823        | 0.47  | 200  | 1.2293          | 0.7327   |
| 0.7569        | 0.7   | 300  | 0.9534          | 0.7868   |
| 0.7428        | 0.93  | 400  | 0.7906          | 0.8078   |
| 0.4309        | 1.16  | 500  | 0.5759          | 0.8538   |
| 0.349         | 1.4   | 600  | 0.5070          | 0.8742   |
| 0.517         | 1.63  | 700  | 0.5048          | 0.8794   |
| 0.3667        | 1.86  | 800  | 0.5212          | 0.8596   |
| 0.169         | 2.09  | 900  | 0.4112          | 0.8888   |
| 0.1443        | 2.33  | 1000 | 0.3294          | 0.9109   |
| 0.1389        | 2.56  | 1100 | 0.3146          | 0.9190   |
| 0.142         | 2.79  | 1200 | 0.2994          | 0.9208   |
| 0.0921        | 3.02  | 1300 | 0.2620          | 0.9324   |
| 0.0768        | 3.26  | 1400 | 0.2516          | 0.9336   |
| 0.061         | 3.49  | 1500 | 0.2425          | 0.9388   |
| 0.0729        | 3.72  | 1600 | 0.2335          | 0.9418   |
| 0.0757        | 3.95  | 1700 | 0.2285          | 0.9429   |


### Framework versions

- Transformers 4.27.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2