sgangireddy commited on
Commit
385e732
·
1 Parent(s): 80b1b7c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -1,20 +1,21 @@
1
  ---
2
  license: apache-2.0
3
  tags:
 
4
  - generated_from_trainer
5
  datasets:
6
- - multilingual_librispeech
7
  metrics:
8
  - wer
9
  model-index:
10
- - name: openai/whisper-large-v2
11
  results:
12
  - task:
13
  name: Automatic Speech Recognition
14
  type: automatic-speech-recognition
15
  dataset:
16
- name: multilingual_librispeech
17
- type: multilingual_librispeech
18
  config: italian
19
  split: test
20
  args: italian
@@ -27,9 +28,9 @@ model-index:
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
29
 
30
- # openai/whisper-large-v2
31
 
32
- This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the multilingual_librispeech dataset.
33
  It achieves the following results on the evaluation set:
34
  - Loss: 0.2051
35
  - Wer: 8.3353
 
1
  ---
2
  license: apache-2.0
3
  tags:
4
+ - whisper-event
5
  - generated_from_trainer
6
  datasets:
7
+ - facebook/multilingual_librispeech
8
  metrics:
9
  - wer
10
  model-index:
11
+ - name: Whisper largeV2 Italian MLS
12
  results:
13
  - task:
14
  name: Automatic Speech Recognition
15
  type: automatic-speech-recognition
16
  dataset:
17
+ name: facebook/multilingual_librispeech italian
18
+ type: facebook/multilingual_librispeech
19
  config: italian
20
  split: test
21
  args: italian
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
  should probably proofread and complete it, then remove this comment. -->
30
 
31
+ # Whisper largeV2 Italian MLS
32
 
33
+ This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the facebook/multilingual_librispeech italian dataset.
34
  It achieves the following results on the evaluation set:
35
  - Loss: 0.2051
36
  - Wer: 8.3353