--- language: - en license: apache-2.0 library_name: transformers tags: - merge - mergekit - lazymergekit inference: false base_model: - senseable/Westlake-7B - Guilherme34/Samantha-v2 - uukuguy/speechless-mistral-six-in-one-7b pipeline_tag: text-generation model-index: - name: sethuiyer/Nandine-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.28 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.01 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.83 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.1 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.19 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.4 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Nandine-7b name: Open LLM Leaderboard --- # Nandine-7b

Nandine

This is Nandine-7b, rated **87.47/100** by GPT-4 on a collection of 30 synthetic prompts generated by GPT-4. Nandine-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [senseable/Westlake-7B](https://huggingface.co./senseable/Westlake-7B) * [Guilherme34/Samantha-v2](https://huggingface.co./Guilherme34/Samantha-v2) * [uukuguy/speechless-mistral-six-in-one-7b](https://huggingface.co./uukuguy/speechless-mistral-six-in-one-7b) Nandine-7b represents a harmonious amalgamation of narrative skill, empathetic interaction, intellectual depth, and eloquent communication. ## OpenLLM Benchmark | Model | Average ⬆️ | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |--------------------------------|------------|-------|-----------|-------|------------|------------|-------| | sethuiyer/Nandine-7b 📑 | 71.47 | 69.28 | 87.01 | 64.83 | 62.1 | 83.19 | 62.4 | ## Nous Benchmark | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |---------------------------------------------------------|------:|------:|---------:|-------:|------:| |[Nandine-7b](https://huggingface.co./sethuiyer/Nandine-7b)| 43.54| 76.41| 61.73| 45.27| 56.74| For more details, refer [here](https://huggingface.co./sethuiyer/Nandine-7b/blob/main/EVAL.md) **Pros:** 1. **Strong Narrative Skills:** Excels in storytelling, creating engaging and imaginative narratives. 2. **Accurate Information Delivery:** Provides factual and detailed information across various topics. 3. **Comprehensive Analysis:** Capable of well-rounded discussions on complex and ethical topics. 4. **Emotional Intelligence:** Shows empathy and understanding in responses requiring emotional sensitivity. 5. **Clarity and Structure:** Maintains clear and well-structured communication. **Cons:** 1. **Language Translation Limitations:** Challenges in providing fluent and natural translations. 2. **Incomplete Problem Solving:** Some logical or mathematical problems are not solved accurately. 3. **Lack of Depth in Certain Areas:** Needs deeper exploration in some responses for a more comprehensive understanding. 4. **Occasional Imbalance in Historical Context:** Some historical explanations could be more balanced. 5. **Room for Enhanced Creativity:** While creative storytelling is strong, there's potential for more varied responses in hypothetical scenarios. **Intended Use:** Ideal for users seeking a versatile AI companion for creative writing, thoughtful discussions, and general assistance. ## 🧩 Configuration ```yaml models: - model: senseable/Westlake-7B parameters: weight: 0.55 density: 0.6 - model: Guilherme34/Samantha-v2 parameters: weight: 0.10 density: 0.3 - model: uukuguy/speechless-mistral-six-in-one-7b parameters: weight: 0.35 density: 0.6 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "sethuiyer/Nandine-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## GGUF GGUF files are available at [Nandine-7b-GGUF](https://huggingface.co./sethuiyer/Nandine-7b-GGUF/tree/main) ## Ollama Nandine is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/nandine``` in your terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on a Google Colab backend. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_sethuiyer__Nandine-7b) | Metric |Value| |---------------------------------|----:| |Avg. |71.47| |AI2 Reasoning Challenge (25-Shot)|69.28| |HellaSwag (10-Shot) |87.01| |MMLU (5-Shot) |64.83| |TruthfulQA (0-shot) |62.10| |Winogrande (5-shot) |83.19| |GSM8k (5-shot) |62.40|