sergioburdisso
commited on
Push model to huggingface
Browse files- 1_Pooling/config.json +1 -1
- README.md +8 -7
- config.json +4 -4
- config_sentence_transformers.json +3 -3
- model.safetensors +2 -2
- modules.json +0 -6
- sentence_bert_config.json +1 -1
- tokenizer.json +2 -4
- tokenizer_config.json +1 -3
1_Pooling/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"word_embedding_dimension":
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
|
|
1 |
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
README.md
CHANGED
@@ -11,13 +11,14 @@ datasets:
|
|
11 |
- Salesforce/dialogstudio
|
12 |
pipeline_tag: sentence-similarity
|
13 |
base_model:
|
14 |
-
-
|
15 |
---
|
16 |
|
17 |
|
18 |
-
# Dialog2Flow
|
19 |
|
20 |
-
This
|
|
|
21 |
|
22 |
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
|
23 |
|
@@ -37,7 +38,7 @@ Then you can use the model like this:
|
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
sentences = ["your phone please", "okay may i have your telephone number please"]
|
39 |
|
40 |
-
model = SentenceTransformer('sergioburdisso/dialog2flow-
|
41 |
embeddings = model.encode(sentences)
|
42 |
print(embeddings)
|
43 |
```
|
@@ -63,8 +64,8 @@ def mean_pooling(model_output, attention_mask):
|
|
63 |
sentences = ['your phone please', 'okay may i have your telephone number please']
|
64 |
|
65 |
# Load model from HuggingFace Hub
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-
|
67 |
-
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-
|
68 |
|
69 |
# Tokenize sentences
|
70 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -153,4 +154,4 @@ SentenceTransformer(
|
|
153 |
## License
|
154 |
|
155 |
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
|
156 |
-
MIT License.
|
|
|
11 |
- Salesforce/dialogstudio
|
12 |
pipeline_tag: sentence-similarity
|
13 |
base_model:
|
14 |
+
- aws-ai/dse-bert-base
|
15 |
---
|
16 |
|
17 |
|
18 |
+
# Dialog2Flow single target (DSE-base)
|
19 |
|
20 |
+
This a variation of the **D2F$_{single}$** model introduced in the paper ["Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction"](https://publications.idiap.ch/attachments/papers/2024/Burdisso_EMNLP2024_2024.pdf) published in the EMNLP 2024 main conference.
|
21 |
+
This version uses DSE-base as the backbone model which yields to an increase in performance as compared to the vanilla version using BERT-base as the backbone (results reported in Appendix C).
|
22 |
|
23 |
Implementation-wise, this is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or search.
|
24 |
|
|
|
38 |
from sentence_transformers import SentenceTransformer
|
39 |
sentences = ["your phone please", "okay may i have your telephone number please"]
|
40 |
|
41 |
+
model = SentenceTransformer('sergioburdisso/dialog2flow-single-dse-base')
|
42 |
embeddings = model.encode(sentences)
|
43 |
print(embeddings)
|
44 |
```
|
|
|
64 |
sentences = ['your phone please', 'okay may i have your telephone number please']
|
65 |
|
66 |
# Load model from HuggingFace Hub
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained('sergioburdisso/dialog2flow-single-dse-base')
|
68 |
+
model = AutoModel.from_pretrained('sergioburdisso/dialog2flow-single-dse-base')
|
69 |
|
70 |
# Tokenize sentences
|
71 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
154 |
## License
|
155 |
|
156 |
Copyright (c) 2024 [Idiap Research Institute](https://www.idiap.ch/).
|
157 |
+
MIT License.
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
@@ -8,14 +8,14 @@
|
|
8 |
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
-
"hidden_size":
|
12 |
"initializer_range": 0.02,
|
13 |
-
"intermediate_size":
|
14 |
"layer_norm_eps": 1e-12,
|
15 |
"max_position_embeddings": 512,
|
16 |
"model_type": "bert",
|
17 |
"num_attention_heads": 12,
|
18 |
-
"num_hidden_layers":
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "/idiap/temp/sburdisso/repos/jsalt/keya-dialog/outputs/tod_das+slots/bert-base-uncased/soft-labels/label_multi-qa-mpnet-base-dot-v1_t0.35/msl64_pm-mean/ch-on_t0.05/lr3e-06_bs64_e15/best_model_metric_0",
|
3 |
"architectures": [
|
4 |
"BertModel"
|
5 |
],
|
|
|
8 |
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
"layer_norm_eps": 1e-12,
|
15 |
"max_position_embeddings": 512,
|
16 |
"model_type": "bert",
|
17 |
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
"pad_token_id": 0,
|
20 |
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
config_sentence_transformers.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "2.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "
|
6 |
}
|
7 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.30.2",
|
5 |
+
"pytorch": "2.0.1"
|
6 |
}
|
7 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:133a5d2947ff9797b9bddeef74fcc957f7485fc0d219e59362e8489e9a4c3b76
|
3 |
+
size 437951328
|
modules.json
CHANGED
@@ -10,11 +10,5 @@
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"idx": 2,
|
16 |
-
"name": "2",
|
17 |
-
"path": "2_Normalize",
|
18 |
-
"type": "sentence_transformers.models.Normalize"
|
19 |
}
|
20 |
]
|
|
|
10 |
"name": "1",
|
11 |
"path": "1_Pooling",
|
12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
]
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
"do_lower_case": false
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 64,
|
3 |
"do_lower_case": false
|
4 |
}
|
tokenizer.json
CHANGED
@@ -2,14 +2,12 @@
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
-
"max_length":
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
9 |
"padding": {
|
10 |
-
"strategy":
|
11 |
-
"Fixed": 128
|
12 |
-
},
|
13 |
"direction": "Right",
|
14 |
"pad_to_multiple_of": null,
|
15 |
"pad_id": 0,
|
|
|
2 |
"version": "1.0",
|
3 |
"truncation": {
|
4 |
"direction": "Right",
|
5 |
+
"max_length": 64,
|
6 |
"strategy": "LongestFirst",
|
7 |
"stride": 0
|
8 |
},
|
9 |
"padding": {
|
10 |
+
"strategy": "BatchLongest",
|
|
|
|
|
11 |
"direction": "Right",
|
12 |
"pad_to_multiple_of": null,
|
13 |
"pad_id": 0,
|
tokenizer_config.json
CHANGED
@@ -43,12 +43,10 @@
|
|
43 |
},
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
"cls_token": "[CLS]",
|
46 |
-
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
"mask_token": "[MASK]",
|
49 |
-
"max_length":
|
50 |
"model_max_length": 512,
|
51 |
-
"never_split": null,
|
52 |
"pad_to_multiple_of": null,
|
53 |
"pad_token": "[PAD]",
|
54 |
"pad_token_type_id": 0,
|
|
|
43 |
},
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
"cls_token": "[CLS]",
|
|
|
46 |
"do_lower_case": true,
|
47 |
"mask_token": "[MASK]",
|
48 |
+
"max_length": 64,
|
49 |
"model_max_length": 512,
|
|
|
50 |
"pad_to_multiple_of": null,
|
51 |
"pad_token": "[PAD]",
|
52 |
"pad_token_type_id": 0,
|