import torch from parler_tts import ParlerTTSForConditionalGeneration from transformers import AutoTokenizer, set_seed import soundfile as sf class EndpointHandler: def __init__(self, path=""): self.device = "cuda:0" if torch.cuda.is_available() else "cpu" self.model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-expresso").to(self.device) self.tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-expresso") def __call__(self, data: Any): inputs = data["inputs"] prompt = inputs["prompt"] description = inputs["description"] input_ids = self.tokenizer(description, return_tensors="pt").input_ids.to(self.device) prompt_input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device) set_seed(42) try: generation = self.model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() return audio_arr except Exception as e: logger.error(str(e)) del inputs gc.collect() torch.cuda.empty_cache() return {"error": str(e)}