--- library_name: transformers license: mit base_model: xlnet/xlnet-large-cased tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: UIT-NO-PRExlnet-large-cased-finetuned results: [] --- # UIT-NO-PRExlnet-large-cased-finetuned This model is a fine-tuned version of [xlnet/xlnet-large-cased](https://huggingface.co./xlnet/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6311 - F1: 0.7534 - Roc Auc: 0.8047 - Accuracy: 0.5018 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.6008 | 1.0 | 139 | 0.5907 | 0.0994 | 0.5061 | 0.1227 | | 0.5594 | 2.0 | 278 | 0.5834 | 0.1435 | 0.5 | 0.1300 | | 0.4458 | 3.0 | 417 | 0.3967 | 0.6474 | 0.7336 | 0.4007 | | 0.3153 | 4.0 | 556 | 0.3647 | 0.7128 | 0.7775 | 0.4495 | | 0.2474 | 5.0 | 695 | 0.3392 | 0.7382 | 0.7952 | 0.4693 | | 0.1915 | 6.0 | 834 | 0.3702 | 0.7346 | 0.7980 | 0.5054 | | 0.1194 | 7.0 | 973 | 0.4083 | 0.7340 | 0.7994 | 0.4982 | | 0.0953 | 8.0 | 1112 | 0.4656 | 0.7507 | 0.8101 | 0.4910 | | 0.0482 | 9.0 | 1251 | 0.5682 | 0.7438 | 0.7934 | 0.4838 | | 0.0504 | 10.0 | 1390 | 0.5374 | 0.7419 | 0.8069 | 0.4729 | | 0.0265 | 11.0 | 1529 | 0.6019 | 0.7408 | 0.8011 | 0.4838 | | 0.0082 | 12.0 | 1668 | 0.6136 | 0.7429 | 0.8015 | 0.4874 | | 0.0077 | 13.0 | 1807 | 0.6212 | 0.7461 | 0.8020 | 0.4982 | | 0.0117 | 14.0 | 1946 | 0.6089 | 0.7519 | 0.8086 | 0.4928 | | 0.0044 | 15.0 | 2085 | 0.6246 | 0.7508 | 0.8050 | 0.5 | | 0.0041 | 16.0 | 2224 | 0.6382 | 0.7460 | 0.8005 | 0.4946 | | 0.0024 | 17.0 | 2363 | 0.6333 | 0.7467 | 0.8011 | 0.5 | | 0.0053 | 18.0 | 2502 | 0.6311 | 0.7534 | 0.8047 | 0.5018 | | 0.0027 | 19.0 | 2641 | 0.6311 | 0.7508 | 0.8032 | 0.5036 | | 0.0029 | 20.0 | 2780 | 0.6318 | 0.7520 | 0.8037 | 0.5054 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.21.0