Model save
Browse files- README.md +80 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: xlnet-large-cased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: PRE-xlnet-large-cased-finetuned-augmentation
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# PRE-xlnet-large-cased-finetuned-augmentation
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2115
|
23 |
+
- F1: 0.5464
|
24 |
+
- Roc Auc: 0.7436
|
25 |
+
- Accuracy: 0.7278
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.3168 | 1.0 | 389 | 0.3357 | 0.1362 | 0.5687 | 0.5380 |
|
58 |
+
| 0.3382 | 2.0 | 778 | 0.3096 | 0.1411 | 0.5806 | 0.5457 |
|
59 |
+
| 0.3417 | 3.0 | 1167 | 0.3022 | 0.1456 | 0.5805 | 0.5470 |
|
60 |
+
| 0.3357 | 4.0 | 1556 | 0.2927 | 0.1565 | 0.5737 | 0.5489 |
|
61 |
+
| 0.2993 | 5.0 | 1945 | 0.2770 | 0.2407 | 0.6166 | 0.5888 |
|
62 |
+
| 0.282 | 6.0 | 2334 | 0.2660 | 0.3136 | 0.6391 | 0.6274 |
|
63 |
+
| 0.2473 | 7.0 | 2723 | 0.2469 | 0.3656 | 0.6638 | 0.6564 |
|
64 |
+
| 0.2566 | 8.0 | 3112 | 0.2268 | 0.4480 | 0.6943 | 0.6885 |
|
65 |
+
| 0.2228 | 9.0 | 3501 | 0.2193 | 0.4335 | 0.6773 | 0.6853 |
|
66 |
+
| 0.208 | 10.0 | 3890 | 0.2187 | 0.5049 | 0.7302 | 0.6860 |
|
67 |
+
| 0.2031 | 11.0 | 4279 | 0.2065 | 0.5010 | 0.7127 | 0.7040 |
|
68 |
+
| 0.1798 | 12.0 | 4668 | 0.2100 | 0.5404 | 0.7428 | 0.7143 |
|
69 |
+
| 0.185 | 13.0 | 5057 | 0.2034 | 0.5558 | 0.7553 | 0.7201 |
|
70 |
+
| 0.1523 | 14.0 | 5446 | 0.2039 | 0.5487 | 0.7436 | 0.7239 |
|
71 |
+
| 0.1447 | 15.0 | 5835 | 0.2093 | 0.5382 | 0.7375 | 0.7284 |
|
72 |
+
| 0.1181 | 16.0 | 6224 | 0.2115 | 0.5464 | 0.7436 | 0.7278 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- Transformers 4.45.1
|
78 |
+
- Pytorch 2.4.0
|
79 |
+
- Datasets 3.0.1
|
80 |
+
- Tokenizers 0.20.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1445339812
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58c78d90acff59938bd5977923023b7fb79b4f1f144ae71e85251e433e4288f1
|
3 |
size 1445339812
|